
Direct Foundations for Compositional Programming
Andong Fan1 #

Zhejiang University, Hangzhou, China

Xuejing Huang1 #

The University of Hong Kong, China

Han Xu #

Peking University, Beijing, China

Yaozhu Sun #

The University of Hong Kong, China

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
The recently proposed CP language adopts Compositional Programming: a new modular program-
ming style that solves challenging problems such as the Expression Problem. CP is implemented on
top of a polymorphic core language with disjoint intersection types called F+

i . The semantics of F+
i

employs an elaboration to a target language and relies on a sophisticated proof technique to prove
the coherence of the elaboration. Unfortunately, the proof technique is technically challenging and
hard to scale to many common features, including recursion or impredicative polymorphism. Thus,
the original formulation of F+

i does not support the two later features, which creates a gap between
theory and practice, since CP fundamentally relies on them.

This paper presents a new formulation of F+
i based on a type-directed operational semantics

(TDOS). The TDOS approach was recently proposed to model the semantics of languages with
disjoint intersection types (but without polymorphism). Our work shows that the TDOS approach
can be extended to languages with disjoint polymorphism and model the full F+

i calculus. Unlike the
elaboration semantics, which gives the semantics to F+

i indirectly via a target language, the TDOS
approach gives a semantics to F+

i directly. With a TDOS, there is no need for a coherence proof.
Instead, we can simply prove that the semantics is deterministic. The proof of determinism only uses
simple reasoning techniques, such as straightforward induction, and is able to handle problematic
features such as recursion and impredicative polymorphism. This removes the gap between theory
and practice and validates the original proofs of correctness for CP. We formalized the TDOS variant
of the F+

i calculus and all its proofs in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Intersection types, disjoint polymorphism, operational semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.18

Related Version Extended Version: https://arxiv.org/abs/2205.06150

Supplementary Material Supplements can be found as follows:
Software (ECOOP 2022 approved artifact): https://doi.org/10.4230/DARTS.8.2.4
Software (Coq formalization): https://github.com/andongfan/CP-Foundations
Software (Online demo of CP implementation): https://plground.org

Funding This research was funded by the University of Hong Kong and Hong Kong Research Grants
Council projects number 17209519, 17209520 and 17209821.

Acknowledgements We thank the anonymous reviewers and Wenjia Ye for their helpful comments.

1 The first two authors contributed equally to this work.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and
Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 18; pp. 18:1–18:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afan2018@zju.edu.cn
https://orcid.org/0000-0003-2124-9625
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
mailto:1800012917@pku.edu.cn
https://orcid.org/0000-0002-2548-6866
mailto:yzsun@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://arxiv.org/abs/2205.06150
https://doi.org/10.4230/DARTS.8.2.4
https://github.com/andongfan/CP-Foundations
https://plground.org
https://doi.org/10.4230/DARTS.8.2.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Direct Foundations for Compositional Programming

1 Introduction

Compositional Programming [46] is a recently proposed modular programming paradigm.
It offers a natural solution to the Expression Problem [42] and novel approaches to modu-
lar pattern matching and dependency injection. The CP language adopts Compositional
Programming. In CP, several new programming language constructs enable Compositional
Programming. Of particular interest for this paper, CP has a notion of typed first-class
traits [5], which are extended in CP to also enable a form of family polymorphism [16].

The semantics of CP and its notion of traits is defined via an elaboration to the core
calculus F+

i [7]: a polymorphic core language with a merge operator [34] and disjoint
intersection types [30]. The elaboration of traits is inspired by Cook’s denotational semantics
of inheritance [12]. In the denotational semantics of inheritance, the key idea is that
mechanisms such as classes or traits, which support self-references (a.k.a. the this keyword
in conventional OOP languages), can be modeled via open recursion. In other words, the
encoding of classes or traits is parametrized by a self-reference. This allows late binding of self-
references at the point of instantiation and enables the modification and composition of traits
before instantiation. Instantiation happens when new is used, just as in conventional OOP
languages. When new is used, it essentially closes the recursion by binding the self-reference,
which then becomes a recursive reference to the instantiated object. In the denotational
semantics of inheritance, new is just a fixpoint operator.

The semantics of the original formulation of F+
i [7] itself is also given by an elaboration

into Fco, a System F-like language with products. Unlike F+
i , Fco has no subtyping or

intersection types, and it has a conventional operational semantics. The main reason for F+
i

to use elaboration is that F+
i has a type-dependent semantics: types may affect the runtime

behavior of a program. The elaboration semantics for F+
i seems like a natural choice, since

this is commonly seen in various other type-dependent languages and calculi. For instance,
the semantics of type-dependent languages with type classes [43], Scala-style implicits [29]
or gradual typing [40] all usually adopt an elaboration approach. In contrast, in the past,
more conventional direct formulations using an operational semantics have been avoided for
languages with a type-dependent semantics. The appeals of the elaboration semantics are
simple type-safety proofs, and the fact that they directly offer an implementation technique
over conventional languages without a type-dependent semantics.

There are also important drawbacks when using an elaboration semantics. One of them
is simply that more infrastructure is needed for a target language (such as Fco) and its
associated semantics and metatheory. Moreover, the elaboration semantics is indirect, and
to understand the semantics of a program, we must first translate it to the target language
(which may be significantly different from the source) and then reason in terms of the
target. More importantly, besides type-safety, another property that is often desirable for an
elaboration semantics is coherence [35]. Many elaboration semantics are non-deterministic:
the same source program can elaborate into different target programs. If those different
programs have a different semantics, then this is problematic, as it would imply that the
source language would have a non-deterministic or ambiguous semantics. Coherence ensures
that even if the same program elaborates to different target expressions, the different target
expressions are semantically equivalent, eventually evaluating to the same result.

For some languages, including F+
i , proving coherence is highly non-trivial and hard to

scale to common programming language features. For the original F+
i , the proof of coherence

comes at the cost of simple features such as recursion and impredicative polymorphism. The
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proof of coherence for F+
i is based on a logical relation called canonicity [6]. Together with a

notion of contextual equivalence, the two techniques are used to prove coherence. The use
of logical relations is a source of complexity in the proof and the reason why recursion and
impredicative polymorphism have not been supported. For recursion, in principle, the use of
a more sophisticated step-indexed logical relation [3] may enable a proof of coherence, at the
cost of some additional complexity. However, due to the extra complexity, this was left for
future work. For impredicative polymorphism, Bi et al. [7] identified important technical
challenges, and it is not known if the proof can be extended with such a feature.

The absence of recursion and impredicative polymorphism creates a gap between theory
and practice, since CP fundamentally relies on them. Moreover, the proofs of correctness
of CP rely on the assumption that F+

i with recursion and impredicative polymorphism
would preserve all the properties of F+

i . Impredicative polymorphism is needed in CP to
allow the types of traits with polymorphic methods to be used as type parameters for other
polymorphic functions. Recursion is needed in CP because the denotational semantics uses
fixpoint operators to instantiate traits. In addition, the fixpoint operators must be lazy;
otherwise, self-references can easily trigger non-termination. Therefore, a call-by-name (CBN)
semantics is more natural and also assumed in the CP encoding of traits. However, the
semantics of the Fco calculus is call-by-value (CBV) and, by inheritance, the elaboration
semantics of F+

i has a CBV semantics as well.
This paper presents a new formulation of F+

i based on a type-directed operational semantics
(TDOS) [20]. The TDOS approach has recently been proposed to model the semantics of
languages with disjoint intersection types (but without polymorphism). Although F+

i is not
a new calculus, we revise its formulation significantly in this paper. Our new formulation of
F+

i is different from the original one in three aspects. Firstly, the semantics of the original F+
i

is given by elaborating to Fco, while our semantics for F+
i is a direct operational semantics.

Secondly, our new formulation of F+
i supports recursion and impredicative polymorphism.

Finally, we employ a call-by-name evaluation strategy.
Our work shows that the TDOS approach can be extended to languages with disjoint

polymorphism and model the complete F+
i calculus with recursion and impredicative poly-

morphism. Moreover, there is no need for a coherence proof. Instead, we can simply prove
that the semantics is deterministic. The proof of determinism uses only simple reasoning
techniques, such as straightforward induction, and is able to handle problematic features
such as recursion and impredicative polymorphism. Thus, this removes the gap between
theory and practice and validates the original proofs of correctness for the CP language.
Figure 1 contrasts the differences in terms of proofs and implementation of CP using Zhang
et al.’s original work and our own work. We formalized the TDOS variant of the F+

i calculus,
together with its type-soundness and determinism proof in the Coq proof assistant. Moreover,
we have a new implementation of CP based on our new reformulation of F+

i .
In summary, the contributions of this work are:

CBN F+
i with recursion and impredicative polymorphism. This paper presents a

CBN variant of F+
i extended with recursion and impredicative polymorphism.

Determinism and type-soundness for F+
i using a TDOS. We prove the type-

soundness and determinism of F+
i using a direct TDOS. These proofs validate the proofs

of correctness previously presented for CP by Zhang et al. [46].
Technical innovations. Our formulation of F+

i has various technical innovations over
the original one, including a new formulation of subtyping using splittable types [22] and
more flexible term applications.

ECOOP 2022
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Figure 1 Contrasting the flow of results for CP using the original formulation, and our work.

Implementation and Mechanical formalization. We formalized the TDOS variant
of the F+

i calculus, together with its type-soundness and determinism proof in the Coq
proof assistant. We also have a new implementation of CP built on top of a TDOS
formulation of F+

i available at https://plground.org. The full Coq formalization and
the extended version of this paper are available at:

https://github.com/andongfan/CP-Foundations

2 Motivations and Technical Innovations

In this section, we introduce Compositional Programming by example and show how CP
traits elaborate to F+

i expressions. After that, we will discuss the practical issues that
motivate us to reformulate F+

i , as well as technical challenges and innovations.

2.1 Compositional Programming by Example
To demonstrate the capabilities of Compositional Programming, we show how to solve a
variant of the Expression Problem [42] in the CP language. Our solution is adapted from
the original one by Zhang et al. [46]. In this variant, in addition to the usual challenge of
extensibility in multiple directions, we also consider the problem of context evolution [25, 37],
so the interpreter may require different contextual information for different features of the
interpreter. The CP language allows a modular solution to both challenges, which also
illustrates some key features in Compositional Programming, including first-class traits [5],
nested composition [6], and disjoint polymorphism [2].

Examples are based on a simple expression language, and the goal is to perform various
operations over it, such as evaluation and free variable bookkeeping. The expression language
consists of numbers, addition, variables, and let-bindings. Besides CP code, we also provide
analogous Haskell code in the initial examples so that readers can connect them with existing
concepts in functional languages.

Compositional interfaces. First, we define the compositional interface for numeric literals
and addition. The compositional interface at the top of Figure 2a is similar to Haskell’s
algebraic data type at the top of Figure 2b. Exp is a special kind of type parameter in CP
called a sort, which serves as the return type of both constructors Lit and Add. Sorts will

https://plground.org
https://github.com/andongfan/CP-Foundations
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type NumSig<Exp> = {
Lit : Int → Exp;
Add : Exp → Exp → Exp;

};

type Eval Ctx = { eval : Ctx → Int };
evalNum Ctx = trait implements

NumSig<Eval Ctx> ⇒ {
(Lit n).eval _ = n;
(Add e1 e2).eval ctx =

e1.eval ctx + e2.eval ctx;
};

(a) CP code.

data Exp where
Lit :: Int → Exp
Add :: Exp → Exp → Exp

type Eval ctx = ctx → Int

eval :: Exp → Eval ctx
eval (Lit n) _ = n
eval (Add e1 e2) ctx =

eval e1 ctx + eval e2 ctx

(b) Haskell counterpart.

Figure 2 Initial expression language: numbers and addition.

be instantiated with concrete representations later. Internally, sorts are handled differently
from normal type parameters [46]. In accordance with the compositional interface, we can
then define how to evaluate the expression language.

Polymorphic contexts. As shown in the middle of Figure 2a, the type Eval declares a
method eval that takes a context and returns an integer. Ctx is a type parameter that can
be instantiated later, enabling particular traits to assume particular contextual information
for the needs of various features. The technique is called polymorphic contexts [46] in
Compositional Programming.

Compositional traits. The trait evalNum in Figure 2a is parametrized by a type parameter
Ctx. Note that, in CP, type parameters always start with a capital letter, while regular
parameters are lowercase. The trait evalNum implements the compositional interface NumSig
by instantiating it with the sort Eval Ctx. Traits are the basic reusable unit in CP, which
are usually type-checked against compositional interfaces. In this trait, we use a lightweight
syntax called method patterns to define how to evaluate different expressions. Such a definition
is analogous to pattern matching in Figure 2b. Since Lit and Add do not need to be conscious
of any information in the context, the type parameter Ctx is unconstrained. The only thing
that we can do to the polymorphic context is either to ignore it (like in Lit) or to pass it to
recursive calls (like in Add).

More expressions. Adding more constructs to the expression language is awkward in Haskell
because algebraic data types are closed. However, language components can be modularly
declared in CP. Two new constructors, Let and Var, are declared in the second compositional
interface VarSig, as shown in Figure 3. Then the two traits implement VarSig using method
patterns for the new constructors. Since the two new expressions need to inspect or update
some information in the context, we expose the appropriate Env part to evalVar, while the
remaining context is kept polymorphic. This is achieved with the disjointness constraint [2]
Ctx*Env in evalVar. A disjointness constraint denotes that the type parameter Ctx is
disjoint to the type Env. In other words, types that instantiate Ctx cannot overlap with the
type Env. Also note that the notation { ctx with env = ... } denotes a polymorphic
record update [9]. In the code for let-expressions, we need to update the environment in the
recursive calls to extend it with a new entry for the let-variable.

ECOOP 2022
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type VarSig<Exp> = {
Let : String → Exp → Exp → Exp;
Var : String → Exp;

};

type Env = { env : String → Int };
evalVar (Ctx*Env) = trait implements VarSig<Eval (Env&Ctx)> ⇒ {
(Let s e1 e2).eval ctx = e2.eval
{ ctx with env = insert s (e1.eval ctx) ctx.env };

(Var s).eval ctx = lookup s ctx.env;
};

Figure 3 Adding more expressions: variables and let-bindings.

type FV = { fv : [String] };
fv = trait implements ExpSig<FV> ⇒ {
(Lit n).fv = [];
(Add e1 e2).fv = union e1.fv e2.fv;
(Let s e1 e2).fv = union e1.fv (delete s e2.fv);
(Var s).fv = [s];

};

evalWithFV (Ctx*Env) = trait implements ExpSig<FV ⇒ Eval (Env&Ctx)> ⇒ {
(Lit n).eval _ = n;
(Add e1 e2).eval ctx = e1.eval ctx + e2.eval ctx;
(Let s e1 e2).eval ctx = if elem s e2.fv
then e2.eval { ctx with env = insert s (e1.eval ctx) ctx.env }
else e2.eval ctx;

(Var s).eval ctx = lookup s ctx.env;
};

Figure 4 Adding more operation: free variable bookkeeping and another version of evaluation.

Intersection types. Independently defined interfaces can be composed using intersection
types. For example, ExpSig below is an intersection of NumSig and VarSig, containing all of
the four constructors:

type ExpSig<Exp> = NumSig<Exp> & VarSig<Exp>;
-- = { Lit : ...; Add : ...; Let : ...; Var : ... };

More operations. Not only can expressions be modularly extended, but we can easily add
more operations. In Figure 4, a new trait fv modularly implements a new operation that
records free variables in an expression. Here, union and delete are two library functions
for arrays. The modular definition of fv is quite natural in functional programming, but it
is hard in traditional object-oriented programming. We have to modify the existing class
definitions and supplement them with a method. This is typical of the well-known Expression
Problem. In summary, we have shown that Compositional Programming can solve both
dimensions of this problem: adding expressions and operations.
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Dependency injection. Besides the Expression Problem, Figure 4 also shows another
significant feature of CP: dependency injection. In evalWithFV, a new implementation of
evaluation is defined with a dependency on free variables. The method pattern for Let will
check if s appears as a free variable in e2. If so, it evaluates e1 first as usual; otherwise, we
do not need to do any computation or update the environment since s is not used at all.
Note that the compositional interface ExpSig is instantiated with two types separated by a
fat arrow (⇒) (⇒ was originally denoted by % in Zhang et al.’s implementation of CP). FV
on the left-hand side is the dependency of evalWithFV. In other words, the definition of
evalWithFV depends on another trait that implements ExpSig<FV>. The static type checker
of CP will check this fact later at the point of trait instantiation. With such dependency
injection, we can call e2.fv even if evalWithFV does not have an implementation of fv. In
other words, evalWithFV depends only on the interface of fv (the type FV), but not any
concrete implementation.

Self-type annotations. Before we show how to perform the new version of the evaluation
over the whole expression language, we want to create a repository of expressions for later
use. We expect that these expressions are unaware of any concrete operation, so we use a
polymorphic Exp type to denote some abstract type of expressions. The code that creates
the repository of expressions is1:

repo Exp = trait [self : ExpSig<Exp>] ⇒ {
num = Add (Lit 4) (Lit 8);
var = Let "x" (Lit 4) (Let "y" (Lit 8) (Add (Var "x") (Var "y")));

};

To make constructors available from the compositional interface, we add a self-type annotation
to the trait repo. The self type annotation [self : ExpSig<Exp>] imposes a requirement
that the repo should finally be merged with some trait implementing ExpSig<Exp>. This
requirement is also statically enforced by the static type checker of CP. This is the second
mechanism in Compositional Programming to modularly inject dependencies.

Nested trait composition. With the language components ready, we can compose them
using the merge operator [14], which in the CP language is denoted as a single comma (,).
First, we show how to compose the old version of the evaluation:

exp = new repo @(Eval Env) , evalNum @Env , evalVar @Top;
exp.var.eval { env = empty } --> 12

Since the context has evolved after we add variables, we pass different type arguments to
the two traits to make the final context consistent. The final context type is Env, so we
pass Env to evalNum and Top to evalVar. Type arguments are prefixed by @ in CP. A more
interesting example is to merge the new version of evaluation with free variable bookkeeping:

exp’ = new repo @(Eval Env & FV) , evalWithFV @Top , fv;
exp’.var.eval { env = empty } --> 12

After the trait composition, both operations (eval and fv) are available for expressions that
are built with the four constructors (Lit, Add, Let, and Var). Note that here fv satisfies
the dependency of evalWithFV. If no implementation of the type FV is present in the

1 In Zhang et al.’s original work [46], the new operator must be added before every constructor. However,
our new implementation will implicitly insert new (see Section 2.2 for details).

ECOOP 2022
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Figure 5 Visualization of nested composition.

composition, there would be a type error, since the requirement for evalWithFV would not
be satisfied. The composition of the three traits is nested because the two methods nested in
the four constructors are composed, as visualized in Figure 5. With nested trait composition,
the Expression Problem is elegantly solved in Compositional Programming. Moreover, we
allow context evolution using a relatively simple way with polymorphic contexts.

Impredicative polymorphism. Another feature of CP is that it allows the creation of objects
with polymorphic methods, similar to most OOP languages with generics where classes
can contain polymorphic methods (like Java). However, for this to work properly, CP
must support impredicative polymorphism (the ability to instantiate type parameters with
polymorphic types) as System F does. For example, consider:

type Poly = { id : forall A. A → A };
idTrait = trait implements Poly ⇒ { id = ΛA. \(x:A) → x };

(new idTrait).id @Poly -- impredicative

While accepted by our variant of CP and F+
i , such polymorphic instantiations are forbidden

in the original formulation of F+
i .

2.2 Elaborating CP to F+
i

Under the surface of CP, the foundation for Compositional Programming is the F+
i calculus.

We present the key features in F+
i and take a closer look at the connection between CP and

F+
i expressions. Here we focus on the elaboration of traits, which are the most important

aspect of this paper. We refer curious readers to the work by Zhang et al. [46] for the full
formulation of the type-directed elaboration of CP.

Key features of the F+
i calculus. F+

i is basically a variant of System F [17,33] extended
with intersection types and a merge operator. In the F+

i calculus, we denote the merge
operator with a double comma (, ,) (instead of the single comma notation in CP), following
the original notation proposed by Dunfield [14]. The merge operator allows us to introduce
terms of intersection types. For example, 1 , , true is a term of type Int & Bool. Moreover,
record concatenation, which is used to encode multi-field traits, is encoded as merges of
records in F+

i . Thus, multi-field records are represented as merges of multiple single-field
records. However, to ensure determinism of operational semantics, not all terms can be
merged with each other. We impose a disjointness check when typing merges: a merge can
only type check when the types of the terms being merged are disjoint, ensuring that every
part in a merge can be distinguished by its type. For traits, for example, the disjointness
restriction ensures that traits cannot have two fields/methods with the same name m and
overlapping types, which could otherwise lead to ambiguity when doing method lookup. Here,
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we show an example of ambiguity if there is no disjointness check. With intersection types,
both A & B ≤ A and A & B ≤ B are valid. Therefore, a merge 1 , , 2 of type Int & Int can be
typed with Int, but at runtime, two different values of type Int are found. Thus, an expression
such as (1 , , 2)+1 could evaluate to either 2 or 3. Since we wish for a deterministic semantics,
we use disjointness to prevent such forms of ambiguity. On the other hand, (1 , , true)+1 type
checks because Int and Bool are disjoint, and it evaluates to 2 unambiguously. A disjointness
constraint can also be added to a type variable in a System F-style polymorphic type, such
as ∀X ∗ Int. X & Int. Moreover, to support unrestricted intersection types like Int & Int, the
disjointness check is relaxed to consistency for certain terms, so that merges with duplications
like 1 , , 1 are allowed.

Elaborating traits into F+
i . The elaboration of traits is inspired by Cook’s denotational

semantics of inheritance [12]. To use a concrete example, we revisit the trait repo defined in
Section 2.1. Both the creation and instantiation of traits are included in the definition of
repo:
repo Exp = trait [self : ExpSig<Exp>] ⇒ {
num = Add (Lit 4) (Lit 8);
var = ...

};

The CP code above is elaborated to corresponding F+
i code of the form:

repo = ΛExp. λ(self : ExpSig<Exp>).
let $Lit = self.Lit in let $Add = self.Add in
let $Let = self.Let in let $Var = self.Var in
{ num = fix self:Exp. $Add (fix self:Exp. $Lit 4 self)

(fix self:Exp. $Lit 8 self) self } ,,
{ var = ... };

The type parameter Exp in the repo trait is expressed by a System-F-style type lambda
(ΛX. e). Note that CP employs a form of syntactic sugar for constructors to allow concise
use of constructors and avoid explicit uses of new. The source code Add (Lit 4) (Lit 8)
is first expanded into new $Add (new $Lit 4) (new $Lit 8), which insert new operators.
Next we describe the elaboration process of creating and instantiating traits:

Creation of traits: A trait is elaborated to a generator function whose parameter is
a self-reference (like self above) and whose body is a record of methods;
Instantiation of traits: The new construct is used to instantiate a trait. Uses of new
are elaborated to a fixpoint which applies the elaborated trait function to a self-reference.
In the definition of the field num there are three elaborations of new. For instance, the
CP code new $Lit 4 corresponds to the F+

i code fix self:Exp. $Lit 4 self.

It is clear now that our trait encoding is heavily dependent on recursion, due to the
self-references employed by the encoding. However, the original F+

i [7] does not support
recursion, which reveals a gap between theory and practice.

2.3 The Gap Between Theory and Practice
Our primary motivation to reformulate F+

i is to bridge the gap between theory and practice.
The original formulation of F+

i lacks recursion, impredicative polymorphism and uses the
traditional call-by-value (CBV) evaluation strategy. However, the recent work of CP assumes a
different variant of F+

i that is equipped with fixpoints and the call-by-name (CBN) evaluation.
It is worthwhile to probe into the causes of such differences.

ECOOP 2022
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Non-triviality of coherence. Recursion is essential for general-purpose computation in
programming. More importantly, our encoding of traits requires recursion. For example,
new e is elaborated to fix self. e self. However, adding recursion to the original version
of F+

i turns out to be highly non-trivial. The original F+
i is defined using an elaboration

semantics. A fundamental property of F+
i is coherence [35], which states that the semantics

is unambiguous. Coherence is non-trivial due to the presence of the merge operator [14]. To
prove coherence, a logical relation, called canonicity [7], is used to reason about contextual
equivalence in the original work of F+

i . For example, with contextual equivalence, we can
show that the two possible elaborations for the same F+

i source expression into Fco are
contextually equivalent:

1 : Int & Int : Int ⇝ fst (1, 1) 1 : Int & Int : Int ⇝ snd (1, 1)

Two typing derivations lead to two elaborations in this example, which pick different sides of
the merge. However, both elaborated expressions will be reduced to 1 eventually.

Unfortunately, the proof technique for coherence based on logical relations does not
immediately scale to recursive programs and programs with impredicative polymorphism.
A possible solution, known from the research of logical relations, is to move to a more
sophisticated step-indexed form of logical relations [1]. However, this requires a major
reformulation of the proofs and metatheory of the original F+

i , and it is not clear whether
additional challenges would be present in such an extension. Thus, the lack of the two
features in the theory of the original F+

i remains a serious limitation since only terminating
programs and predicative polymorphism are considered. In other words, we cannot encode
traits as presented in Section 2.2 in the original F+

i . To get around this issue and enable the
encoding of traits, Zhang et al. [46] simply assumed an extension of F+

i with recursion and
their proof of coherence for CP was done under the assumption that the original F+

i with
recursion was coherent or deterministic.

Our work rectifies this gap in the theory of Compositional Programming and the CP
language. We reformulate F+

i using a direct type-directed operational semantics [22] that
allows recursion and prove that the semantics is deterministic. Thus, our reformulation of
F+

i can serve as a target language to encode traits and validate the proofs of the elaboration
of CP in terms of F+

i with recursion. In addition, our approach gives a semantics to F+
i

directly, instead of relying on an indirect elaboration semantics to a System F-like language.

Evaluation strategies. Most mainstream programming languages use CBV, but CBN is a
more natural evaluation strategy for object encodings such as Cook’s denotational semantics
of inheritance. As stated by Bruce et al. in their work on object encodings [8]:

“Although we shall perform conversion steps in whatever order is convenient for the
sake of examples, we could just as well impose a call-by-name reduction strategy. (Most
of the examples would diverge under a call-by-value strategy. This can be repaired at
the cost of some extra lambda abstractions and applications to delay evaluation at
appropriate points.)”

In our elaboration of traits, we adopt a similar approach to object encodings. For example,
consider the following CP expression:

type A = { l1 : Int; l2 : Int };
new (trait [self : A] ⇒ { l1 = 1; l2 = self.l1 })
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which is elaborated to the following (slightly simplified) F+
i expression:

fix self :A. {l1 = 1} , , {l2 = self .l1}

The trait expression is elaborated to a function, and the new expression turns the function
into a fixpoint. Unfortunately, this expression terminates under CBN but diverges under
CBV. If evaluated under CBV, the variable self will be evaluated repeatedly, despite the
fact that only self .l1 is used:

fix self :A. {l1 = 1} , , {l2 = self .l1}
↪→ {l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}
↪→ {l1 = 1} , , {l2 = ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l1}
↪→ · · ·

We may tackle the problem of non-termination by wrapping self-references in thunks, but
CBN provides a simpler and more natural way. In our CBN formulation of F+

i , {l = e} is
already a value (instead of {l = v}), so we do not need to further evaluate e:

fix self :A. {l1 = 1} , , {l2 = self .l1}
↪→ {l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}

The l2 field is further evaluated only when a record projection is performed:

(fix self :A. {l1 = 1} , , {l2 = self .l1}).l2
↪→ ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l2
↪→ (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1
↪→ ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l1
↪→ 1

This example illustrates how our new CBN formulation of F+
i avoids non-termination of trait

instantiation.

2.4 Technical Challenges and Innovations
The main novelty of our reformulation of F+

i is the use of a type-directed operational
semantics [20] instead of an elaboration semantics. With a TDOS, adding recursion and
impredicative polymorphism to our proof of determinism is trivial. Our work is an extension
of the λ+

i calculus [22] which adapts the TDOS approach. We also follow the subtyping
algorithm design in λ+

i . While λ+
i supports BCD-style distributive subtyping [4], the addition

of disjoint polymorphism does bring some technical challenges. Moreover, there are some
smaller changes to F+

i that enable us to type-check more programs and improve the design
of the original F+

i . We will give an overview of the technical challenges and innovations next.

The role of casting. A merge like 1 , , true has multiple meanings under different types (e.g.
Int or Bool). Eventually, we have to extract some components via the elimination of merges,
which is a key issue when designing a direct operational semantics for a calculus with the
merge operator. A non-deterministic semantics could allow e1 , , e2 ↪→ e1 and e1 , , e2 ↪→ e2
without any constraints, at the cost of losing both type preservation and determinism [14].
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To obtain a non-ambiguous and type-safe semantics, we follow the TDOS approach [20]:
which uses (up)casts to ensure that values have the right form during reduction. In a TDOS,
there is a casting relation, which is used in the reduction rule for annotated values:

v ↪→A v′

v :A ↪→ v′ Step-annov

Casting enables us to drop certain parts from a term (e.g., 1 , , true ↪→Int 1). Very often,
it is necessary for us to do so to satisfy the disjointness constraint. Consider a function
λx : Int. x , , false. For its body to be well-typed, x cannot contain a boolean. Hence, when
the function is applied to 1 , , true, we cannot directly substitute the argument in. Instead, it
is wrapped by (and later cast to) Int to resolve the potential conflict.

((λx : Int. x , , false) : Int & Bool → Int & Bool) (1 , , true)
↪→ ((1 , , true) : Int , , false) : Int & Bool
↪→ (1 , , false) : Int & Bool
↪→ 1 , , false

TDOS and function annotations. In casting, values in a merge are selected based on
type information. In the absence of runtime type-checking, we need to know the type
of input value syntactically to match it with the target type. Thus, functions must be
accompanied by type annotations. The previous work λ+

i [22] defines the syntax of functions
like λx. e : A → C . While the original argument type A is always kept during reduction,
λ+

i ’s casting relation may generate a value that has a proper subtype of the requested type:
λx. e :A → C ↪→B1→B2 λx. e :A → B2. We make casting more precise with a more liberal
syntax in F+

i . We allow bare abstractions λx :A. e while λ+
i does not. Our casting relation

requires lambdas to be annotated (λx :A. e) :B, but the full annotation B does not have to
be a function type. For example, (λx : Int. x , , true) : (Int → Int) & (Int → Bool) still acts as a
function, and is equivalent to (λx : Int. x , , true) : Int → Int & Bool.

Algorithmic subtyping with disjoint polymorphism. F+
i extends BCD-style distributive

subtyping [4] to disjoint polymorphism. ∀X ∗ Int. X & Int represents the intersection of
some type X and Int assuming X is disjoint to Int. Like arrows or records, such universal
types distribute over intersections. Hence, (∀X ∗ Int. X) & (∀X ∗ Int. Int) is a subtype of
∀X ∗ Int. X & Int. A well-known challenge in supporting distributivity in the BCD-style
subtyping is to obtain an algorithmic formulation of subtyping. There have been many efforts
to eliminate the explicit transitivity rule to obtain an algorithmic formulation [26, 31, 39].
Compared with the original F+

i [7], we employ a different subtyping algorithm design, using
splittable types [21]. This approach employs a type-splitting operation (B ◁ A ▷ C ) that
converts a given type A to an equivalent intersection type B & C , for example, A → B1 & B2
is split to A → B1 and A → B2. The subtyping algorithm uses type splitting whenever an
intersection type is expected in the conventional algorithm for subtyping without distributivity,
and therefore handles distributivity smoothly and modularly. For space reasons, the novel
algorithmic subtyping approach is discussed in the extended version of the paper.

Enhanced subtyping and disjointness with more top-like types. Unlike previous systems
with disjoint polymorphism [2, 7], we add a context in subtyping judgments to track the
disjointness assumption X ∗ A whenever we open a universal type ∀X ∗ A. B, similar to the
subtyping with F-bounded quantification. The extra information enhances our subtyping:
we know a type must be a supertype of Top, if it is disjoint with Bot. This also fixes the
following broken property in the original F+

i , as we now have more types that are top-like.
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▶ Definition 2.1 (Disjointness specification). If A is disjoint with B, any common supertypes
they have must be equivalent to Top.

Keeping this property is necessary for us to obtain a deterministic operational semantics.
Meanwhile, we prove our subtyping and disjointness relations are decidable in Coq. Note
that in the original F+

i , the decidability of the two relations was proved manually, although
the rest of the proof was mechanized.

3 The F+
i Calculus and Its Operational Semantics

This section introduces the F+
i calculus, including its static and dynamic semantics.

3.1 Syntax
The syntax of F+

i is as follows:

Types A, B, C ::= X | Int | Top | Bot | A & B | A → B | ∀X ∗ A. B | {l :A}
Checkable terms p ::= λx :A. e | ΛX . e | {l = e}
Expressions e ::= p | x | i | ⊤ | e : A | e1 , , e2 | fix x :A. e | e1 e2 | e A | e.l
Values v ::= p | p :A | i | ⊤ | v1 , , v2

Term contexts Γ ::= · | Γ, x :A
Type contexts ∆ ::= · | ∆, X ∗ A

Types. Types include the Top type and the uninhabited type Bot. Intersection types are
created with A & B. Disjoint polymorphism, a key feature of F+

i , is based on universal types
with a disjointness quantifier ∀X ∗ A. B, expressing that the type variable X is bound inside
B and disjoint to type A. {l :A} denotes single-field record types, where l is the record label.
Multi-field record types are desugared to intersections of single-field ones [36]:

{l1 : A1; . . . ; ln : An} ≜ {l1 : A1} & · · · & {ln : An}

Expressions. As we will explain later with the typing rules, some expressions do not have
an inferred type (or principal type), including lambda abstractions, type abstractions, and
single-field records. We use metavariable p to represent these expressions, which with optional
annotations, are values. Also, note that expressions inside record values do not have to
be a value since our calculus employs call-by-name. The merge operator , , composes two
expressions to make a term of an intersection type. The top value ⊤ can be viewed as a
merge of zero elements. Fixpoint expressions fix x :A. e construct recursive programs. The
type annotation A denotes the type of x as well as the whole expression. Like record types,
multi-field records are desugared to merges of single-field ones:

{l1 = e1; . . . ; ln = en} ≜ {l1 = e1} , , . . . , , {ln = en}

Contexts. We have two contexts: Γ tracks the types of term variables; ∆ tracks the
disjointness information of type variables, which follows the original design of F+

i . We use
∆ ⊢ A, ⊢ ∆, and ∆ ⊢ Γ judgments for the type well-formedness and the context well-
formedness (defined in the extended version of the paper). For multiple type well-formedness
judgments, we combine them into one, i.e., ∆ ⊢ A, B means ∆ ⊢ A and ∆ ⊢ B.
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∆ ⊢ A <: B (Declarative Subtyping)

DS-refl
⊢ ∆ ∆ ⊢ A

∆ ⊢ A <: A

DS-trans
∆ ⊢ A <: B ∆ ⊢ B <: C

∆ ⊢ A <: C

DS-top
⊢ ∆ ∆ ⊢ A
∆ ⊢ A <: Top

DS-bot
⊢ ∆ ∆ ⊢ A
∆ ⊢ Bot <: A

DS-and
∆ ⊢ A <: B ∆ ⊢ A <: C

∆ ⊢ A <: B & C

DS-andl
⊢ ∆ ∆ ⊢ A, B
∆ ⊢ A & B <: A

DS-andr
⊢ ∆ ∆ ⊢ A, B
∆ ⊢ A & B <: B

DS-arrow
∆ ⊢ A2 <: A1 ∆ ⊢ B1 <: B2

∆ ⊢ A1 → B1 <: A2 → B2

DS-distArrow
⊢ ∆ ∆ ⊢ A, B, C

∆ ⊢ (A → B) & (A → C ) <: A → B & C

DS-topArrow
⊢ ∆

∆ ⊢ Top <: Top → Top

DS-rcd
∆ ⊢ A <: B

∆ ⊢ {l :A} <: {l :B}

DS-distRcd
⊢ ∆ ∆ ⊢ A, B

∆ ⊢ {l :A} & {l :B} <: {l :A & B}

DS-topRcd
⊢ ∆

∆ ⊢ Top <: {l :Top}

DS-all
∆ ⊢ A2 <: A1 ∆, X ∗ A2 ⊢ B1 <: B2

∆ ⊢ ∀X ∗ A1. B1 <: ∀X ∗ A2. B2

DS-topAll
⊢ ∆

∆ ⊢ Top <: ∀X ∗ Top. Top

DS-distAll
⊢ ∆ ∆ ⊢ A ∆, X ∗ A ⊢ B1, B2

∆ ⊢ (∀X ∗ A. B1) & (∀X ∗ A. B2) <: ∀X ∗ A. (B1 & B2)

DS-topVar
X ∗ A ∈ ∆ ∆ ⊢ A <: Bot

∆ ⊢ Top <: X

Figure 6 Declarative subtyping rules.

3.2 Subtyping
Figure 6 shows our subtyping relation, which extends BCD-style subtyping [4] with disjoint
polymorphism, records, and the bottom type. Compared with the original F+

i , we add a
context to track type variables and their disjointness information. The context not only
ensures the well-formedness of types, but is also important to our new rule DS-topVar.
An equivalence relation (Definition 3.1) is defined on types that are subtype of each other.
These equivalent types can be converted back and forth without loss of information.

▶ Definition 3.1 (Type equivalence). ∆ ⊢ A ∼ B ≜ ∆ ⊢ A <: B and ∆ ⊢ B <: A.

For functions (rule DS-arrow) and disjoint quantifications (rule DS-all), subtyping
is covariant in positive positions and contravariant in negative positions. The intuition is
that type abstractions of the more specific type (subtype) should have a looser disjointness
constraint for the parameter type. ∀X ∗Top. A denotes that there is no constraint on X , since
Top is disjoint to all types. On the contrary, Bot is the strictest constraint. It is useful in types
like ∀X ∗ {l :Bot}. A which expresses that X does not contain any informative field of label
l [44]. For intersection types, rules DS-andl, DS-andr, and DS-and axiomatize that A & B
is the greatest lower bound of A and B. As a typical characteristic of BCD-style subtyping,
type constructors distribute over intersections, including arrows (rule DS-distArrow),
records (rule DS-distRcd) and disjoint quantifications (rule DS-distAll).

Another feature of BCD subtyping, which is often overlooked, is the generalization of
top-like types, i.e. supertypes of Top.
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▶ Definition 3.2 (Specification of top-like types). ∆ ⊢⌉A⌈ ≜ ∆ ⊢ A ∼ Top.

Initially, top-like types include Top and intersections like Top & Top. But the BCD
subtyping adds Top → Top to it via rule DS-topArrow, as well as A → Top for any type
A due to the contravariance of function parameters. Rule DS-topArrow can be viewed
as a special case of rule DS-distArrow where intersections are replaced by Top (one can
consider it as an intersection of zero components). Like the original F+

i , we extend this idea
to universal types and record types (rules DS-topAll and DS-topRcd).

The most important change is the rule DS-topVar. This rule means that a type variable
is top-like if it is disjoint with the bottom type. Every type B is a common supertype of B
itself and Bot. If B is disjoint with Bot, then it must be top-like. We proved that subtyping
is decidable via an equivalent algorithmic formulation.

The discussion about algorithmic subtyping is in the extended version of the paper.

▶ Lemma 3.3 (Decidability of subtyping). ∆ ⊢ A <: B is decidable.

Disjointness. The notion of disjointness (Definition 2.1), defined via subtyping, is used in
the original F+

i , as well as calculi with disjoint intersection types [30]. We proved that our
algorithmic definition of disjointness (written as ∆ ⊢ A ∗ B, in the extended version of the
paper) is sound to a specification in terms of top-like types.

▶ Lemma 3.4 (Disjointness soundness). If ∆ ⊢ A ∗ B then for all type C that ∆ ⊢ A <: C
and ∆ ⊢ B <: C we have ∆ ⊢⌉C⌈.

Informally, two disjoint types do not have common supertypes, except for top-like types.
This definition is motivated by the desire to prevent ambiguous upcasts on merges. That is,
we wish to avoid casts that can extract different values of the same type from a merge. Thus
in F+

i and other calculi with disjoint intersection types, we only allow merges of expressions
whose only common supertypes are types that are (equivalent to) the top type. For instance,
consider the merge (1 , , true) , , (2 , , ‘c’). The first component of the merge (1 , , true) has
type Int & Bool, while the second component (2 , , ‘c’) has type Int & Char. This merge is
problematic because Int is a supertype of the type of the merge (Int & Bool) & (Int & Char),
allowing us to extract two different integers by casting the two terms to Int. Fortunately, our
disjointness restriction rejects such merges since the supertype Int is not top-like.

3.3 Bidirectional Typing
The type system of F+

i is bidirectional [15], where the subsumption rule is triggered by type
annotations. Calculi with a merge operator are incompatible with a general subsumption rule
because it cancels disjointness checking. For example, with a general subsumption rule, we
can directly use 1 , , true as a term of type Int since Int & Bool <: Int. Then, merging 1 , , true
with the term false would type-check since disjointness simply checks whether the static types
of merging terms are disjoint, and Int is disjoint with Bool. But now, the merge contains two
booleans, which would lead to ambiguity if later we wish to extract a boolean value from the
merge. The key issue is that a general subsumption rule loses static type information that is
necessary to reject ambiguous merges. A bidirectional type system solves this problem by
having a more restricted form of subsumption that only works in the checking mode where
the type is provided. A more detailed description of the problem for calculi with the merge
operator can be found in Huang et al.’s work [22]. We should also remark that this issue
of incompatibility with a general subsumption rule is not unique to calculi with a merge
operator. It shows up, for instance, in calculi with gradual typing [41] and calculi with record
concatenation and subtyping [9].
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Typing modes ⇔ ::= ⇐ | ⇒
Pre-values u ::= i | ⊤ | e :A | u1 , , u2

∆; Γ ⊢ e ⇔ A (Bidirectional Typing)

Typ-top
⊢ ∆ ∆ ⊢ Γ

∆; Γ ⊢ ⊤ ⇒ Top

Typ-lit
⊢ ∆ ∆ ⊢ Γ
∆; Γ ⊢ i ⇒ Int

Typ-var
⊢ ∆ ∆ ⊢ Γ x : A ∈ Γ

∆; Γ ⊢ x ⇒ A

Typ-abs
∆ ⊢ B1 <: A

∆; Γ, x :A ⊢ e ⇐ B2

∆; Γ ⊢ λx :A. e ⇐ B1 → B2

Typ-tabs
∆ ⊢ Γ

∆, X ∗ A; Γ ⊢ e ⇐ B
∆; Γ ⊢ ΛX . e ⇐ ∀X ∗ A. B

Typ-rcd
∆; Γ ⊢ e ⇐ A

∆; Γ ⊢ {l = e} ⇐ {l :A}

Typ-app
∆; Γ ⊢ e1 ⇒ A

A▷ B → C ∆; Γ ⊢ e2 ⇐ B
∆; Γ ⊢ e1 e2 ⇒ C

Typ-tapp
∆; Γ ⊢ e ⇒ B

B ▷ ∀X ∗ C1. C2 ∆ ⊢ A ∗ C1

∆; Γ ⊢ e A ⇒ C2[X 7→ A]

Typ-proj
∆; Γ ⊢ e ⇒ A

A▷ {l :C}

∆; Γ ⊢ e.l ⇒ C

Typ-merge
∆ ⊢ A ∗ B

∆; Γ ⊢ e1 ⇒ A ∆; Γ ⊢ e2 ⇒ B
∆; Γ ⊢ e1 , , e2 ⇒ A & B

Typ-mergev
⊢ ∆ ∆ ⊢ Γ u1 ≈ u2

·; · ⊢ u1 ⇒ A ·; · ⊢ u2 ⇒ B
∆; Γ ⊢ u1 , , u2 ⇒ A & B

Typ-inter
∆; Γ ⊢ e ⇐ A
∆; Γ ⊢ e ⇐ B

∆; Γ ⊢ e ⇐ A & B

Typ-fix
∆; Γ, x :A ⊢ e ⇐ A

∆; Γ ⊢ fix x :A. e ⇒ A

Typ-anno
∆; Γ ⊢ e ⇐ A

∆; Γ ⊢ (e :A) ⇒ A

Typ-sub
∆; Γ ⊢ e ⇒ A ∆ ⊢ A <: B

∆; Γ ⊢ e ⇐ B

Figure 7 Bidirectional typing rules for F+
i .

Typing. As presented in Figure 7, there are two modes of typing: synthesis (⇒) and
checking (⇐). We use ⇔ as a metavariable for typing modes. ∆; Γ ⊢ e ⇔ A indicates
that under type context ∆ and term context Γ, the expression e has type A in mode ⇔. A
bidirectional type system directly provides a type-checking algorithm. ∆, Γ, e are all inputs
in both modes. Type synthesis generates a unique type as the output (also called the inferred
type), while type checking takes a type as an input and examines the term.

▶ Lemma 3.5 (Uniqueness of type synthesis). If ∆; Γ ⊢ e ⇒ A1 and ∆; Γ ⊢ e ⇒ A2 then
A1 = A2.

Conversion of typing modes happens in rule Typ-sub. With it, a term with inferred type
A can be checked against any B that is a supertype of A. Compared to the original F+

i ,
fixpoints are new. They model recursion with a self-reference (x in fix x :A. e). Other than
this, rule Typ-fix is almost the same as rule Typ-anno. It checks the expression e by the
annotated type A, with assumption that x has type A in e.

Checking abstractions, type abstractions, and records. To check a function λx : A. e
against B1 → B2 by rule Typ-abs, we track the type of the term variable as the precise
parameter type A, and check if e can be checked against B2. B1 must be a subtype of A
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A▷ B (Applicative Distribution)

AD-andArrow
A1 ▷ B1 → C1 A2 ▷ B2 → C2

A1 & A2 ▷ B1 & B2 → C1 & C2

AD-andRcd
A1 ▷ {l :B1} A2 ▷ {l :B2}

A1 & A2 ▷ {l :B1 & B2}

AD-andAll
A1 ▷ ∀X ∗ B1. C1 A2 ▷ ∀X ∗ B2. C2

A1 & A2 ▷ ∀X ∗ B1 & B2. (C1 & C2)

AD-refl

A▷A

Figure 8 Applicative distribution rules.

to guarantee the safety of the function application. The type-checking of type abstractions
ΛX . e works by tracking the disjointness relation of the type variable with the context and
checking e against the quantified type B. Typing of records works similarly. Additionally,
there is a rule Typ-inter, which checks an expression against an intersection type by
seperately checking the expression against the composing two types. With this design, we
allow λx : Int. x , , true to be checked against (Int → Int) & (Int → Bool).

Application, record projection, and conversion of applicable types. It is not surprising
that a merge can act as a function. But in the original F+

i , this requires annotations since
the expression being applied in an application must have an inferred arrow type. Our
design, following the λ+

i calculus [22], allows a term of an intersection type to directly apply,
as long as the intersection type can be converted into an applicable form. For example,
(Int → Int) & (Int → Bool) is converted into (Int & Int) → (Int & Bool), which is a supertype
of the former. When inferring the type of the application e1 e2, rule Typ-app first converts
the inferred type of e1 into an arrow form B → C and then checks the argument e2 against
B. If the check succeeds, the whole expression has inferred type C .

In F+
i , we have three applicable forms: arrow types, record types, universal types. Like

rule Typ-app, the typing of type application and record projection also allows the applied
term to have an intersection type, and relies on applicative distribution to convert the type.

Applicative distribution A ▷ B (defined in Figure 8) takes type A and generates a
supertype B that has an applicable form. The first three rules bring all parts of the
input intersection type together. For example, assuming that we apply several merged
functions whose types are A1 → B1, A2 → B2, ..., An → Bn, the combined function type
is (A1 & ... & An) → (B1 & ... & Bn). It is equivalent to the input type only when A1, A2,
..., and An are all equivalent. Essentially, applicative distribution (A ▷ B) is a subset of
subtyping (A <: B). The supertype is selected to ensure that when a merge is applied to
an argument, every component in the merge is satisfied. Although each one of the three
first rules overlaps with the reflexivity rule, for any given type, at most one result has an
applicable form.

Since merges are treated as a whole applicable term, programmers can extend functions
via a compositional approach without modifying the original implementation. It also enables
the modular extension of type abstractions and especially records, which play a core role in
the trait encoding used in Compositional Programming.

Davies and Pfenning also employ a similar design in their bidirectional type system
for refinement intersections [13]. Their type conversion procedure respects subtyping as
well. Instead of combining function types, it makes use of A & B <: A and A & B <: B to
enumerate components in intersections and uncover arrows.
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Arguments arg ::= e | A | {l}
Evaluation contexts E ::= [ ] e | [ ] A | [ ] .l | [ ] , , v | v , , [ ] | [ ] : A

v • arg ↪→ u (Parallel Application)

PApp-abs
B ▷ C1 → C2 e2 ⇝A u

(λx :A. e1) :B • e2 ↪→ (e1[x 7→ u]) :C2

PApp-tabs
A▷ ∀X ∗ B1. B2

(ΛX . e) :A • C ↪→ (e[X 7→ C ]) : (B2[X 7→ C ])

PApp-proj
A▷ {l :B}

{l = e} :A • {l} ↪→ e :B

PApp-merge
v1 • arg ↪→ u1 v2 • arg ↪→ u2

v1 , , v2 • arg ↪→ u1 , , u2

e1 ↪→ e2 (Small-Step Semantics)

Step-papp
v • e ↪→ u

v e ↪→ u

Step-pproj
v • {l} ↪→ u

v.l ↪→ u

Step-ptapp
v • A ↪→ u

v A ↪→ u

Step-fix

fix x :A. e ↪→ e[x 7→ fix x :A. e] :A

Step-annov
pre-value v v ↪→A v′

v :A ↪→ v′

Step-merge
e1 ↪→ e′

1 e2 ↪→ e′
2

e1 , , e2 ↪→ e′
1 , , e′

2

Step-cntx
e ↪→ e′

E [e] ↪→ E [e′]

Figure 9 Small-step semantics rules.

Typing merges with disjointness and consistency. Well-typed merges always have inferred
types. There are two type synthesis rules for merges, both combining the inferred types of
the two parts into an intersection. Typ-merge requires the two subterms to have disjoint
inferred types, like 1 , , true. Typ-mergev relaxes the disjointness constraint to consistency
checking (written as u1 ≈ u2) to accept overlapping terms like 1 , , 1. Such duplication
is meaningless to users but may appear during evaluation. In fact, rule Typ-mergev is
designed for metatheory properties, and not to allow more user-written programs [22]. We
will state the formal specification of consistency in Section 4.1 and show how it is involved
in the proofs of determinism and type soundness. Informally, consistent merges cause no
ambiguity in the runtime. For practical reasons, we only consider pre-values (defined at the
top of Figure 7) in consistency checking, for which the inferred type can be told directly.
The algorithms for disjointness and consistency are presented in the extended version of the
paper. In general, disjointness and consistency avoid introducing ambiguity of merges, and
enable a deterministic semantics for F+

i .

3.4 Small-Step Operational Semantics
We specify the call-by-name reduction of F+

i using a small-step operational semantics in
Figure 9. Step-papp, Step-pproj, and Step-ptapp are reduction rules for application and
record projection. They trigger parallel application (defined in the middle of Figure 9) of
merged values to the argument. Rule Step-fix substitutes the fixpoint term variable with
the fixpoint expression itself. Note that the result is annotated with A. With the explicit
type annotation, the result of reduction preserves the type of the original fixpoint expression.
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Through rule Step-annov, values are cast to their annotated type. Such values must also
be pre-values. This is to filter out checkable terms p including bare abstractions or records
without annotations, as p :A is a form of value itself and thus should not step.

A merge of multiple terms may reduce in parallel, as shown in rule Step-merge. Only
when one side cannot step, the other side steps alone, as suggested by the evaluation context
E , , v and v , , E . Rule Step-cntx is the reduction rule of expressions within an evaluation
context. Since the rule can be applied repeatedly, we only need evaluation contexts of depth
one (shown at the top of Figure 9). Our operational semantics substitutes arguments wrapped
by type annotations into function bodies, while it forbids the reduction of records since
records are values.

Parallel application. Parallel application is at the heart of what we call nested composition
in CP. It provides the runtime behavior that is necessary to implement nested composition,
and it reflects the subtyping distributivity rules at the term level. A merge of functions is
treated as one function. The beta reduction of all functions in a merge happens in parallel
to keep the consistency of merged terms. For type abstractions or records, things are similar.
The parallel application handles these applicable merges uniformly via rule PApp-merge.
To align record projection with the other two kinds of application, we define arguments which
abstract expressions, types, and record labels (at the top of Figure 9). In rule PApp-abs,
the argument expression is wrapped by the function argument type before we substitute
it into the function body. Parallel application of type abstractions substitutes the type
argument into the body and annotates the body with the substituted disjoint quantified type.
Rule PApp-proj projects record fields. Note these three rules have types to annotate the
result, since in Typ-abs, Typ-tabs, and Typ-rcd we only type the expression e inside in
checking mode. With an explicit type annotation, the application preserves types.

Splittable types. Before explaining wrapping or casting, we first introduce splittable
types [22], which are a key component of our algorithmic formulations of various relations.
Ordinary types are the basic units, values of ordinary types can be constructed without the
merge operator. As defined at the top of Figure 10, ordinary types do not have intersection
types in positive positions. By contrast, splittable types are isomorphic to appropriate
intersections. Recall that in BCD-style distributive rules, arrows distribute over intersection,
making Int → Int & Bool equivalent to the intersection (Int → Int) & (Int → Bool). Therefore
we say that the former type splits into the latter two arrow types. In Figure 10, we extend
the type splitting algorithm of λ+

i to universal types in correspondence to the distributive
subtyping rules (rule DS-distArrow, rule DS-distRcd, and rule DS-distAll). It gives a
decision procedure to check whether a type is splittable or ordinary.

▶ Lemma 3.6 (Type splitting loses no information). If ⊢ ∆ and ∆ ⊢ A and B ◁A▷ C then
∆ ⊢ A ∼ B & C.

Expression wrapping. Rules for expression wrapping (e ⇝A u) are listed in the middle of
Figure 10. Basically, it splits the type A when possible, annotates a duplication of e by each
ordinary part of A, and then composes all of them. The only exception is that it never uses
top-like types to annotate terms, to avoid ill-typed results like {l = 1} : Int → Top, but rather
generates a normal value whose inferred type is that top-like type, like (λx : Int. ⊤) : Int → Top
(via the top-like value generating function [[A◦]], defined in the extended version of the paper).
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Ordinary types A◦, B◦, C◦ ::= X | Int | Top | Bot | A → B◦ | ∀X ∗ A. B◦ | {l :A◦}

B ◁A▷ C (Splittable Types)

Sp-arrow
C1 ◁ B ▷ C2

A → C1 ◁A → B ▷A → C2

Sp-rcd
C1 ◁ B ▷ C2

{l :C1}◁ {l :B}▷ {l :C2}

Sp-all
C1 ◁ B ▷ C2

∀X ∗ A. C1 ◁ ∀X ∗ A. B ▷ ∀X ∗ A. C2

Sp-and

A◁A & B ▷ B

e ⇝A u (Expression Wrapping)

EW-top
· ⊢⌉A◦⌈

e ⇝A◦ [[A◦]]

EW-anno
· ⊢ ¬⌉B◦⌈

e ⇝B◦ e :B◦

EW-and
B1 ◁A▷ B2 e ⇝B1 u1 e ⇝B2 u2

e ⇝A u1 , , u2

v1 ↪→A v2 (Casting)

Cast-int

i ↪→Int i

Cast-top
· ⊢⌉A◦⌈

v ↪→A◦ [[A◦]]

Cast-mergel
v1 ↪→A◦ v′

v1 , , v2 ↪→A◦ v′

Cast-merger
v2 ↪→A◦ v′

v1 , , v2 ↪→A◦ v′

Cast-anno
· ⊢ ¬⌉B◦⌈ · ⊢ A <: B◦

e :A ↪→B◦ e :B◦

Cast-and
B1 ◁A▷ B2 v ↪→B1 v1 v ↪→B2 v2

v ↪→A v1 , , v2

Figure 10 Type splitting, expression wrapping and value casting rules.

Casting. Casting (shown in Figure 10) is the core of the TDOS, and is triggered by the
Step-annov rule. Recalling that only values that are also pre-values will be cast, we can
always tell the inferred type of the input value and cast it by any supertype of that inferred
type. The definition of casting uses the notion of splittable types. In rule Cast-and, the
value is cast under two parts of a splittable type separately, and the results are put together
by the merge operator. The following example shows that a merge retains its form when
cast under equivalent types.

((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)
↪→(Int→Int) & (Int→Bool) ((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)
↪→Int→Int & Bool ((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)

In the latter case, the requested type is a function type, but the result has an intersection
type. This change of type causes a major challenge for type preservation.

For ordinary types, rule Cast-int casts an integer to itself under type Int. Under any
ordinary top-like type, the cast result is the output of the top-like value generator. The
casting of values with annotations works by changing the type annotation to the casting (not
top-like) supertype. Rule Cast-mergel and rule Cast-merger make a selection between
two merged values. The two rules overlap, but for a well-typed value, the casting result is
unique.
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Example. We show an example to illustrate the behavior of our semantics:
Let f := λx : Int & Top. x , , false in
((f : (Int & Top → Int) & (Int & Top → Bool)) : Int & Bool → Int & Bool) (1 , , true)

↪→∗ {by rules Step-annov, Cast-and, and Cast-anno}
(f : Int & Bool → Int) , , (f : Int & Bool → Bool) (1 , , true)

↪→∗ {by rules Step-papp, EW-and, EW-anno, and EW-top}
(((1 , , true) : Int , , ⊤) , , false) : Int , , (((1 , , true) : Int , , ⊤) , , false) :Bool

↪→∗ {by rules Step-merge, Step-annov, Cast-int, Cast-mergel, and Cast-merger}
1 , , false

This example shows that a function with a splittable type will be cast to a merge of two
copies of itself with different type annotations, i.e., two split results. The application of a
merge of functions works by distributing the argument to both functions. Finally, casting
selects one side of the merge under the annotated type. From this example, we can see that
without the precise parameter annotation of a lambda function (here Int & Top), there is no
way to filter the argument 1 , , true, causing a conflict.

4 Type Soundness and Determinism

In this section, we show that the operational semantics of F+
i is type-sound and deterministic.

In F+
i , determinism also plays a key role in the proof of type soundness. Proving progress is

straightforward and is discussed in the extended version of the paper.

4.1 Determinism
A common problem with determinism for calculi with a merge operator is the ambiguity
of selection between merged values. In our system, ambiguity is removed by employing
disjointness and consistency constraints on merges via typing.

▶ Definition 4.1 (Consistency specification). v1 ≈spec v2 ≜ For all type A that v1 ↪→A v′
1

and v2 ↪→A v′
2 then v′

1 = v′
2.

Two values in a merge have no conflicts as long as casting both values under any type
leads to the same result. This specification allows v1 and v2 to contain identical expressions
(may differ in annotations), and terms with disjoint types as such terms can only be cast
under top-like types, and the cast result is only decided by that top-like type.

▶ Lemma 4.2 (Top-like casting is term irrelevant). If · ⊢⌉A⌈ and v1 ↪→A v′
1 and v2 ↪→A v′

2
then v′

1 = v′
2.

This is because casting only happens when the given type is a supertype of the cast value’s
type, and disjoint types only share top-like types as common supertypes (Lemma 3.4).

▶ Lemma 4.3 (Upcast only). If ·; · ⊢ v ⇒ B and v ↪→A v′ then · ⊢ B <: A.

With consistency, casting all well-typed values leads to a unique result. The remaining reduc-
tion rules, including expression wrapping and parallel application, are trivially deterministic.

▶ Lemma 4.4 (Determinism of casting). If ·; · ⊢ v ⇒ B and v ↪→A v1 and v ↪→A v2, then
v1 = v2.

▶ Theorem 4.5 (Determinism of reduction). If ·; · ⊢ e ⇒ A and e ↪→ e1 and e ↪→ e2 then
e1 = e2.
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A ≲ B (Isomorphic Subtyping)

IS-refl

A ≲ A

IS-and
B1 ◁ B ▷ B2 A1 ≲ B1 A2 ≲ B2

A1 & A2 ≲ B

Figure 11 Isomorphic subtyping.

4.2 Preservation

Retaining preservation is challenging. When typing merges, we need to satisfy the extra side
conditions in rules Typ-merge and Typ-mergev: disjointness and consistency. While the
former only depends on types, the latter needs special care.

Consistency. As discussed in Section 3.4, casting may duplicate terms. For example,
1 ↪→Int & Int 1 , , 1 by rule Cast-and. Rule Typ-mergev is a relaxation of rule Typ-merge
to type such merges. We have to ensure any two merged casting results are consistent:

▶ Lemma 4.6 (Value consistency after casting). If ·; · ⊢ v ⇒ C and v ↪→A v1 and v ↪→B v2
then v1 ≈ v2.

Then we need to make sure that consistency is preserved during reduction.

▶ Lemma 4.7 (Reduction keeps consistency). If ·; · ⊢ u1 ⇒ A and ·; · ⊢ u2 ⇒ B and u1 ≈ u2
then

if u1 is a value and u2 ↪→ u′
2 then u1 ≈ u′

2;
if u2 is a value and u1 ↪→ u′

1 then u′
1 ≈ u2;

if u1 ↪→ u′
1 and u2 ↪→ u′

2 then u′
1 ≈ u′

2.

Besides, when parallel application substitutes arguments into merges of applicable terms
or projects the wished field, consistency is preserved as well. This requirement enforces us to
define consistency not only on values but also on pre-values since the application transforms
a value merge into a pre-value merge.

▶ Lemma 4.8 (Parallel application keeps consistency). If ·; · ⊢ v1 ⇒ A and ·; · ⊢ v2 ⇒ B and
v1 ≈ v2 and v1 • arg ↪→ u1 and v2 • arg ↪→ u2 then u1 ≈ u2 when

arg is a well-typed expression;
or arg is a label;
or arg is a type C; we know A▷ ∀X ∗ A1. A2 and B ▷ ∀X ∗ B1. B2; and · ⊢ C ∗ A1 & B1.

Our algorithmic formulation of consistency (u1 ≈ u2, presented in the extended version of
the paper) keeps the above properties and is sound to the specification (Definition 4.1). The
basic idea is to tear all merges apart and compare every component from u1 and u2. They
are either the same expression with different annotations or have disjoint types.

▶ Lemma 4.9 (Consistency soundness). If v1 ≈ v2 then v1 ≈spec v2.
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Isomorphic subtyping. In F+
i , types are not always precisely preserved by all reduction

steps. Specifically, when we cast a value v ↪→A v′ (in rule Step-annov) or wrap a term
e ⇝A u (in rule PApp-abs), the context expects v′ or u to have type A, but this is not
always true. In our casting rules shown at the bottom of Figure 10, most values will be
reduced to results with the exact type that we want, except for rule Cast-and. The inferred
type of the result is always an intersection, which may differ from the original splittable type.
To describe the change of types during reduction accurately, we define isomorphic subtyping
(Figure 11). If A ≲ B, we say A is an isomorphic subtype of B. The following lemma shows
that while the two types in an isomorphic subtyping relation may be syntactically different,
they are equivalent under an empty type context (i.e. · ⊢ A <: B and · ⊢ B <: A).

▶ Theorem 4.10 (Isomorphic subtypes are equivalent). If A ≲ B then · ⊢ A ∼ B.

With isomorphic subtyping, we define the preservation property of casting, expression
wrapping, and parallel application as follows.

▶ Lemma 4.11 (Casting preserves typing). If ·; · ⊢ v ⇒ A and v ↪→B v′ then there exists a
type C such that ·; · ⊢ v′ ⇒ C and C ≲ B.

▶ Lemma 4.12 (Expression wrapping preserves typing). If ·; · ⊢ e ⇐ B and · ⊢ B <: A and
e ⇝A u then there exists a type C such that ·; · ⊢ u ⇒ C and C ≲ A.

▶ Lemma 4.13 (Parallel application preserves typing). If ·; · ⊢ v • arg ⇒ A and v • arg ↪→ u
then there exists a type B such that ·; · ⊢ u ⇒ B and B ≲ A.

Of course, we can prove that the result of casting always has a subtype (or an equivalent
type) of the requested type instead of an isomorphic subtype. But it would be insufficient
for type preservation of reduction. In summary, if casting or wrapping generates a term of
type B when the requested type is A, we need B to satisfy:

B is a subtype of A because we want a preservation theorem that respects subtyping.
For any type C , A ∗ C implies B ∗ C . This is for the disjointness and consistency checking.
If A converts into an applicable type C , then B converts into an applicable type too.

Finally, with the lemmas above and isomorphic subtyping, we have the type preservation
property of F+

i . That is, after one or multiple steps of reduction (↪→∗), the inferred type of
the reduced expression is an isomorphic subtype. Therefore, for checked expressions, the
initial type-checking always succeeds.

▶ Theorem 4.14 (Type preservation with isomorphic subtyping). If ·; · ⊢ e ⇔ A and e ↪→∗ e′

then there exists a type B such that ·; · ⊢ e′ ⇔ B and B ≲ A.

▶ Corollary 4.15 (Type preservation). If ·; · ⊢ e ⇔ A and e ↪→∗ e′ then ·; · ⊢ e′ ⇐ A.

5 Related Work

In the following discussion, sometimes we attach the publication year to its calculus name for
easy distinction. For instance, F+

i ’19 means the original formulation of F+
i by Bi et al. [7].

The merge operator, disjoint intersection types and TDOS. The merge operator for
calculi with intersection types was proposed by Reynolds [34]. His original formulation came
with significant restrictions to ensure that the semantics is not ambiguous. Castagna [11]
showed that a merge operator restricted to functions could model overloading. Dunfield [14]
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λ,, λi’16 Fi λ+
i ’18 F+

i ’19 λi λ+
i F+

i

Disjointness
Unrestricted Intersections
Determinism / Coherence No Coh. Coh. Coh. Coh. Det. Det. Det.
Recursion
Direct Semantics
Subject Reduction - - - -
Distributive Subtyping
Disjoint Polymorphism
Evaluation Strategy CBV CBV CBV CBV CBV CBV CBV CBN

Figure 12 Summary of intersection calculi with the merge operator.
( = yes, = no, - = not applicable).

proposed a calculus, which we refer to as λ,,, with an unrestricted merge operator. While
powerful, λ,, lacked both determinism and subject reduction, though type safety was proved
via a type-directed elaboration semantics.

To address the ambiguity problems in Dunfield’s calculus, Oliveira et al. [30] proposed
λi’16, which only allows intersections of disjoint types. With that restriction and the use
of an elaboration semantics, it was then possible to prove the coherence of λi’16, showing
that the semantics was not ambiguous. Bi et al. [6] relaxed the disjointness restriction,
requiring it only on merges, in a new calculus called λ+

i ’18 (or NeColus). This enabled
the use of unrestricted intersections in λ+

i ’18. In addition, they added a more powerful
subtyping relation based on the well-known BCD subtyping [4] relation. The new subtyping
relation, in turn, enabled nested composition, which is a fundamental feature of Compositional
Programming. Unfortunately, both unrestricted intersections and BCD subtyping greatly
complicated the coherence proof of λ+

i ’18. To address those issues, Bi et al. turned to an
approach based on logical relations and a notion of contextual equivalence.

To address the increasing complexities arising from the elaboration semantics and the
coherence proofs, Huang et al. [20, 22] proposed a new approach to model the type-directed
semantics of calculi with a merge operator. The type-directed elaboration in λi’16 and
λ+

i ’18 is replaced by a direct type-directed operational semantics (TDOS). In the new TDOS
formulations of λi and λ+

i , coercive subtyping is removed since subtyping no longer needs to
generate explicit coercion for the elaboration to a target calculus. Instead, runtime implicit
(up)casting is used. This is implemented by the casting relation, which was originally called
typed reduction. Our work adopts TDOS and adds disjoint polymorphism. Disjoint poly-
morphism is used in Compositional Programming to enable techniques such as polymorphic
contexts. We also change the evaluation strategy from call-by-value (CBV) to call-by-name
(CBN), motivated by the elaboration of trait instantiation in Compositional Programming.
Otherwise, with a CBV semantics, many uses of trait instantiation would diverge.

Calculi with disjoint polymorphism. Disjoint polymorphism was originally introduced in
a calculus called Fi by Alpuim et al. [2]. A disjointness constraint is added to universal
quantification in order to allow merging components whose type contains type variables.
Later, Bi et al. [7] augment it with distributive subtyping in the F+

i ’19 calculus. In addition,
the bottom type is added, and unrestricted intersection types are also allowed to fully encode
row and bounded polymorphism [44]. Compared to F+

i ’19, our new formulation of F+
i adopts a

direct semantics, based on a TDOS approach, where simpler proofs of determinism supersede
the original proofs of coherence. As a result, recursion and impredicative polymorphism
can be easily added. Both features are important to fully support the trait encoding in
Compositional Programming. A detailed comparison of calculi with a merge operator, which
summarizes our discussion on related work, can be found in Figure 12.
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F+
i versus F<:. There are quite a few typed object encodings in the literature [8], most

of which are based on F<: [10]. As it is not our goal in this paper to encode full OOP in
F+

i , we will not compare our trait encoding with other object encodings. However, it is still
interesting to compare F+

i with F<:. Some disadvantages of F<: have been studied in the
literature. It has been shown that, with bounded quantification, the subtyping of F<: is
undecidable [32], and some useful operations like polymorphic record updates [9] are not
directly supported. F+

i does not have these drawbacks. F+
i has decidable subtyping. For F<:

the most common decidable fragment is the so-called kernel F<: variant [10]. Xie et al. [44]
have shown that kernel F<: is encodable in F+

i . Therefore the bounded quantification that
is present in kernel F<: can be expressed in F+

i as well. In addition, polymorphic record
updates can be easily encoded without extra language constructs. For example, concerning a
polymorphic record that contains an x field among others (rcd : { x: Int } & R), the
record update { rcd with x = 1 } can be encoded in F+

i as { x = 1 } ,, (rcd : R).
In other words, we can rewrite whichever fields we want and then merge the remaining
polymorphic part back.

F+
i versus row-polymorphic calculi. Row polymorphism provides an alternative way to

model extensible record types in System F-like calculi. There are many variants of row-
polymorphic calculi in the literature [9, 19, 24, 38]. Among them, the most relevant one with
respect to our work is λ|| by Harper and Pierce [19]. Disjoint quantification has a striking
similarity to constrained quantification in λ||. Their compatibility constraint plays a similar
role to disjointness in our system. Furthermore, their merge operator (||) can concatenate
either two records like our merge operator ( , , ) or two record types like our intersection
type operator ( & ). However, their compatibility constraint and merge operator are only
applicable to record types, while we generalize them to arbitrary types. λ|| has no subtyping
and does not allow for distributivity and nested composition either. Disjoint polymorphism
also subsumes the form of row polymorphism present in λ|| as demonstrated by Xie et al. [44].
We refer to Xie et al.’s work for an extended discussion of the relationship between F+

i and
various other row polymorphic calculi.

Semantics for type-dependent languages. The elaboration semantics approach is commonly
used to model the semantics of type-dependent languages and calculi. The appeals of the
elaboration semantics are simple type-safety proofs, and the fact that they directly offer an
implementation technique over conventional languages without a type-dependent semantics.
For instance, the semantics of type-dependent languages with type classes [18,43], Scala-style
implicits [27,29] or gradual typing [40] all use an elaboration semantics. In contrast, in the
past, more conventional direct formulations using an operational semantics have been avoided
for languages with a type-dependent semantics. A problem is that the type-dependent
semantics introduces complexity in the formulation of an operational semantics since enough
type information should be present at runtime and type information needs to be properly
propagated. Early work on the semantics of type classes [23, 28], for instance, attempted
to employ an operational semantics. However, those approaches had significant practical
restrictions in comparison to conventional type classes. The TDOS approach has shown
how to overcome important issues when modeling the direct semantics of type-dependent
languages. An important advantage of the TDOS approach is that it removes the need for
non-trivial coherence proofs. The TDOS approach has also been recently shown to work for
modeling the semantics of gradually typed languages directly [45].
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6 Conclusion

In this paper, we presented a new formulation of the F+
i calculus and showed how it serves

as a direct foundation for Compositional Programming. In contrast to the original F+
i , we

adopt a direct semantics based on the TDOS approach and embrace call-by-name evaluation.
As a result, the metatheory of F+

i is significantly simplified, especially due to the fact
that a coherence proof based on logical relations and contextual equivalence is not needed.
In addition, our formulation of F+

i enables recursion and impredicative polymorphism,
validating the original trait encoding by Zhang et al. [46]. We proved the type-soundness and
determinism of F+

i using the Coq proof assistant. Our research explores further possibilities
of the TDOS approach and shows some novel notions that could inspire the design of other
calculi with similar features.

Although F+
i is already expressive enough to work as a core calculus of the CP language,

some useful constructs like type operators are missing. We leave the extension of type-level
operations for future work. Another interesting design choice that we want to explore is to
lazily evaluate both sides of merges, just like what we have done for record fields, which can
help avoid some redundant computation on the unused side of a merge.
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