
Modular Programming through
Precise Typing of Open Recursion

by

Andong Fan

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Master of Philosophy

in Computer Science and Engineering

7 August 2024, Hong Kong, China



Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the University of Science and Technology to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Science and Technology to reproduce the thesis by pho-

tocopying or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Andong Fan

7 August 2024

ii



Modular Programming through
Precise Typing of Open Recursion

by

Andong Fan

This is to certify that I have examined the above MPhil thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Dr. Lionel Parreaux, Thesis Supervisor

Prof. Xiaofang Zhou, Head of Department

Department of Computer Science and Engineering

7 August 2024

iii



Acknowledgments

First, I would like to express my deepest gratitude to my supervisor, Prof. Lionel Parreaux. His

guidance and support throughout my research have been invaluable to me. His constant flow of

ideas and innovations made this journey really fun. Lionel taught me how to think practically -

he is a true practitioner in programming languages. His passion for designing and implementing

things that work in practice has always inspired me. I am also grateful for his understanding

when I chose to explore different paths in life. I look forward to continuing our collaboration in

the future and I am excited to see where it takes us.

I would like to thank Prof. Jiasi Shen and Prof. Shing-Chi Cheung for serving on my thesis

exam committee. I also want to express my gratitude to my co-authors for their mentorship and

our collaboration: Xuejing Huang, Yaozhu Sun, Han Xu, Aleksander Boruch-Gruszecki, Tony

Chau, Yaoda Zhou, and especially Prof. Bruno C. d. S. Oliveira, who gave me the opportunity

to start my first research project in programming languages.

My gratitude extends to my labmates: Luyu Cheng, John Lam, Anto Chen, Cunyuan Gao,

David Mak, Ruqing Yang, and Ishan Bhanuka, as well as to my dear friends: Litao Zhou, Yue Li,

Ahmed Zaher, Kexun Zhang, Shaokang Li, Aoyang Yu, Chong Zeng, Yufei Wu, Liangyu Zhang,

and Ling Jin.

Finally, I would like to thank my parents and grandmothers for their unconditional love,

understanding, and support.

iv



Contents

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

Abstract 1

1 Introduction 2

2 Motivation 6
2.1 The Expression Problem and Extensible Variants . . . . . . . . . . . . . . . . . . 6

2.2 Open Recursion in MLscript with SuperOOP Mixins . . . . . . . . . . . . . . . . 8

2.3 super-charging OOP with Polymorphic Mixins . . . . . . . . . . . . . . . . . . 10

2.4 Pattern-Matching All the Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Core Language 14
3.1 Design Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Formal Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Discussion 26
4.1 Expressiveness and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Implementation in MLscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Related Work 30
5.1 Solutions to the Expression Problem . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Modeling Inheritance and Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Big-Step Semantics and Its Soundness . . . . . . . . . . . . . . . . . . . . . . . . 38

v



6 Conclusion and Future Work 39
6.1 Traits with Extensible Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Mixin Families and Open Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 45

A Auxiliaries and Proofs 49
A.1 Auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2 Metatheory of 𝜆super . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2.1 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2.2 Coverage and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Examples from the Literature 65
B.1 Polymorphic Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 A Simple "Regions" DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



List of Figures

1 Solution to the Expression Problem in MLscript/SuperOOP. . . . . . . . . . . . . 11

2 Syntax of 𝜆super. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Declarative subtyping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Term typing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Well-formedness check of top-level definitions and mixin inheritance check. . . 19

6 Method implementation type search function. . . . . . . . . . . . . . . . . . . . 21

7 Big-step operational semantics producing values. . . . . . . . . . . . . . . . . . 22

8 Value typing of closures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Auxiliaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 Big-step semantics producing errors. . . . . . . . . . . . . . . . . . . . . . . . . 51

11 Big-step semantics propagating error results. . . . . . . . . . . . . . . . . . . . . 52

12 Finite big-step semantics propagating timeout results. . . . . . . . . . . . . . . . 53

vii



Modular Programming through
Precise Typing of Open Recursion

Andong Fan

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

We present a new variation of object-oriented programming built around three simple and

orthogonal constructs: classes for storing object state, interfaces for expressing object types,

and mixins for reusing and overriding implementations. We show that the latter can be made

uniquely expressive by leveraging a novel feature that we call precisely-typed open recursion.

This features uses this and super annotations to express the requirements of any given partial

method implementation on the types of respectively the current object and the inherited defini-

tions. Crucially, the fact that mixins do not introduce types nor subtyping relationships means

they can be composed even when the overriding and overridden methods have incomparable

types. Together with advanced type inference and structural typing support provided by the

MLscript programming language, we show that this enables an elegant and powerful solution

to the Expression Problem.
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Chapter 1

Introduction

Every object-oriented programming (OOP) developer regularly uses the super keyword to ac-

cess overridden definitions from inherited classes. Yet, this keyword has received relatively little

attention in previous OOP literature and has been conspicuously absent from most previous re-

search, with few exceptions [Goldberg et al. 2004]. This may be due to the assumption that

super-calls can be resolved statically and are thus a mere syntactic convenience that is easily

desugared into traditional core OOP features [Bettini et al. 2013]. In this thesis, we propose to

challenge this assumption: noting that super is in fact late-bound in mixin-composition sys-

tems,
1
we describe an OOP approach which assigns precise types to super-calls to reflect the

“open” nature of this late binding. Consider the following prototypical Point example class:

class Point(x: Int , y: Int)

This class simply defines two coordinates x and y as immutable fields.

Suppose we want to define a comparison function that works on points. We place this defi-

nition in a mixin declaration, for reasons that shall soon become clear:

mixin ComparePoint {

fun compare(lhs: Point , rhs: Point): Bool =

lhs.x == rhs.x and lhs.y == rhs.y }

Now suppose we want to compare colored points, but we would like the concept of colored

comparison to be generally specified, so that it can be directly reused with other things than

points. This can be done using the following combination of interface and mixin (Base is a type

parameter):

interface Colored { color: Str }

mixin CompareColored[Base] {

super: { compare: (Base , Base) Ñ Bool }

fun compare(lhs: Base & Colored , rhs: Base & Colored): Bool =

super.compare(lhs , rhs) and lhs.color.equals(rhs.color) }

We define an interface specifying that a Colored object should contain a color method or field

of type Str. We also define the CompareColored mixin, which implements a comparisonmethod

1super is bound at the time the mixin method where it appears is composed into a class, which can happen as

late as runtime in many mixin-composition languages.
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based on an assumed existing comparison method, inherited from an unknown parent imple-

mentation and referred to through super . The Base type parameter denotes the type compared

by that unknown parent implementation; it is needed in order to leave the mixin open-ended,

i.e., to allow mixing it with arbitrary parent implementations. Notice that the type of compare

in CompareColored is different from the one specified in the super annotation, and is in par-

ticular not a subtype of it: the version defined in CompareColored takes parameters of more

precise type Base & Colored , where & is an intersection type constructor, meaning that each

parameter should be both a Base and a Colored . This difference is a crucial ingredient in our

precisely-typed open recursion approach.

We now define ColoredPoint and place its comparison implementation in a module:

class ColoredPoint(x: Int , y: Int , color: Str)

extends Point(x, y) implements Colored

module CompareColoredPoint extends ComparePoint , CompareColored[Point]

Note that the color method is implemented by the class field of ColoredPoint with the same

name, and the module just desugars to:

class CompareColoredPoint extends ComparePoint , CompareColored[Point]

let CompareColoredPoint = new CompareColoredPoint

CompareColoredPoint did not need to define its own comparison method — that method was

composed automatically by inheriting from the ComparePoint and CompareColored mixins, the

latter using the correct Point base type argument. Note that mixins on the right override those

on the left. The signature of CompareColoredPoint’s compare method, which allows passing

in colored points, is:

CompareColoredPoint.compare: (Point & Colored , Point & Colored) Ñ Bool

which is not a subtype of ComparePoint’s compare method’s type. This is fine because mixins

in our approach do not introduce types, and there is thus no subtyping relationship between

CompareColoredPoint and ComparePoint , which is reminiscent of Cook et al.’s famous asser-

tion that inheritance is not subtyping [Cook et al. 1989].

Now imagine we want to deal with “nested” objects, which are objects that may optionally

have a parent.
2
We can similarly define a comparison mixin for nested objects as follows:

interface Nested[A] { parent: Option[A] }

mixin CompareNested[Base , Final] {

super: { compare: (Base , Base) Ñ Bool }

this: { compare: (Final , Final) Ñ Bool }

fun compare(lhs: Base & Nested[Final], rhs: Base & Nested[Final]): Bool =

super.compare(lhs , rhs) and

if lhs.parent is Some(p)

then rhs.parent is Some(q) and this.compare(p, q)

else rhs.parent is None

}

2Option[A] is defined as the usual algebraic data type, with cases Some[A](value: A) and None .
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In this variant, we additionally use a this refinement, which specifies the eventual types of

the methods the current object should support, after all inheritance and overriding is performed.

The reason we use this and not super in the recursive this.compare(p, q) call is that we

should take into account that p and q themselves may be nested points!

Finally, it is possible to compare points that are both nested and colored by directly compos-

ing the corresponding implementations:

class MyPoint(x: Int , y: Int , color: Str , parent: Option[MyPoint ])

extends Point implements Colored , Nested[MyPoint]

module CompareMyPoint extends ComparePoint , CompareColored[Point],

CompareNested[Point & Colored , MyPoint]

Or alternatively, in a different order:

module CompareMyPoint extends ComparePoint , CompareNested[Point , MyPoint],

CompareColored[Point & Nested[MyPoint ]]

Mixin composition order is meaningful because it determines overriding order; moreover, in

our approach, the types of methods may change through overriding — here, notice how we pass

different type arguments to CompareColored and CompareNested in each version.

To support this idea of precisely-typed mixin composition, we present the SuperOOP sys-

tem, a simple yet uniquely expressive core description of OOP built around three orthogonal

concepts: classes for storing object state, interfaces for expressing object types, and mixins for

reusing and overriding implementations.
3
Notably, we only support inheriting from interfaces

and mixins, not from classes.
4
We show that these simple, orthogonal concepts are sufficient

to explain the usual features of object-oriented programming languages, including those with

complicated multiple-inheritance disciplines, like Scala’s trait composition approach.

We also describe how the ideas of SuperOOP can be integrated into MLscript, a nascent ML-

inspired programming language with structural types and advanced type inference, based on

the recently proposed MLstruct type system [Parreaux and Chau 2022]. Using this approach, all

the types can be inferred automatically as long as they do not involve first-class polymorphism

(which may require explicit annotations). For instance, in MLscript, the CompareColored mixin

shown above could also be written as the more lightweight:

mixin CompareColored {

fun compare(lhs , rhs) =

super.compare(lhs , rhs) and lhs.color.equals(rhs.color) }

for which our compiler infers the following mixin signature:
mixin CompareColored: @ 'A1 'A2 'B . {

super: { compare: ('A1, 'A2) Ñ Bool }

compare: ('A1 & {color: {equals: 'B Ñ Bool}},

'A2 & {color: 'B}) Ñ Bool }

3
Such separation of concernswas already proposed by previous authors, such as Bettini et al. [2013] andDamiani

et al. [2017], but the systems they developed did not support overriding and open recursion, which is the raison
d’être of our approach.

4
We see in Section 4.1 that the Point class inheritance example seen above can be desugared into our core

𝜆super calculus through interface inheritance and without requiring class inheritance.
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Our specific contributions are summarized as follows:

• Weexplain the general ideas of SuperOOP in the context of the structurally-typedMLscript

programming language, and how it allows solving interesting problems simply and ele-

gantly, including the Expression Problem and derivatives (Section 2). SuperOOP mixins

improve on the state of the art by allowing precise typing of open recursion, which to the

best of our knowledge was never proposed before.

• We formalize the core concepts of SuperOOP, including its precisely-typed mixin inher-

itance mechanism, in a declarative type system called 𝜆super. We use big-step semantics

to closely reflect a real implementation and prove the soundness of 𝜆super through the

preservation and coverage properties (Section 3).

• Wediscuss the expressiveness and limitations of the presented design of SuperOOP aswell

as its implementation. We discuss several important approaches from previous literature

on the topic of inheritance and the Expression Problem, explaining how these approaches

compare to SuperOOP in detail (Section 4).

• We provide an implementation of MLscript/SuperOOP which demonstrates how type in-

ference can be used to type check concise class and mixin definitions. Both the open-

source repository and the archived artifact with documentation are available online. A

demo of this implementation is included in the supplementary material of this thesis.
5

The content of this thesis is largely based on the published conference paper authored by

Fan and Parreaux [2023a] which follows up on concepts presented by Fan [2022] as a research

abstract. The implementation is published as a companion research artifact [Fan and Parreaux

2023b] of the conference paper.

5
The demo is also available at: https://hkust-taco.github.io/superoop/.
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Chapter 2

Motivation

In this section, we introduce a motivating example in “super-charged” MLscript.

2.1 The Expression Problem and Extensible Variants

In the field of modular programming, the Expression Problem (EP) [Wadler 1998] describes the

dilemma posed by the modular extension for both data types and their operations in object-

oriented and functional programming. There are many ways of tackling this problem, but one

of the most straightforward is to rely on some notion of extensible variants, as done by Garrigue

[2000] with OCaml’s polymorphic variants. The general idea of extensible variants is that they

are similar to algebraic data types (a.k.a. variants) except that one is able to specify which data

type cases are allowed in a given type, and moreover one is able to add new data type cases after

the fact.

MLscript supports a simple form of extensible variants implemented through subtyping and

structural types. In this section, we see how the combination of this feature and SuperOOP’s

precise typing of open recursion can achieve what we believe is one of the simplest and cleanest

solutions to the expression problem so far.

A Quick Look at MLscript We first take a quick look at MLscript’s basic language features

that enable a form of extensible variants and serve as key ingredients in our solution to the

Expression Problem.

Basic data type classes Consider the following MLscript class definitions which encode a

very minimal expression language that we will later extend in several directions.

class Lit(value: Int)

class Add[T](lhs: T, rhs: T)

The Lit class represents integer literals and the Add class represents addition. Note that the

types of Add’s value parameter are polymorphic, meaning that they can be chosen arbitrarily.

6



Wewill see that the ability to leave the types of subexpressions open is crucial to the extensibility

of our approach.

Union types Based on these class definitions, we can construct types such as:

type LitOrAddLit = Lit | Add[Lit]

where ‘|’ is called a union type constructor. LitOrAddLit represents the type of an expression

that is either an integer literal or an addition between two integer literals.

Equirecursive types More interestingly, we can define the type of arbitrary expressions in

our little language as:

type SimpleExpr = Lit | Add[SimpleExpr]

Notice that this type is equirecursive, meaning that SimpleExpr is equivalent to its unrolling

Lit | Add[SimpleExpr]. This is quite convenient in the context of structural typing, and it

allows us to have subtyping relationships (denoted as ‘T1 <: T2’, meaning that T1 is a subtype

of T2) such as LitOrAddLit <: SimpleExpr . An equivalent way of specifying SimpleExpr

without having to introduce a type declaration is through MLscript’s ‘as’ binder (similar to ‘as’

in languages like OCaml), as in ‘Lit | Add['a] as 'a’ (where ‘as’ has least precedence).

Evaluation To use values in our small expression language, we define an eval recursive func-

tion:

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then eval(lhs) + eval(rhs)

This function uses MLscript’s syntax for pattern matching, which extends the traditional if-

then-else syntactic form with multi-way-if-style functionality and destructuring through an

‘is’ keyword [Parreaux 2022]. The type of this function is inferred by MLscript to be:

eval: (Lit | Add['a] as 'a) Ñ Int

Default cases and constructor difference It is quite instructive to consider what happens

when default cases are used in MLscript, as in:

fun eval2(e) =

if e is

Lit(n) then n

Add(lhs , rhs) then eval2(lhs) + eval2(rhs)

else e

In this case, the type inferred is

eval2: (Lit | Add['a] | 'b\Lit\Add as 'a) Ñ (Int | 'b)

Above, ‘\’ is a constructor difference type operator,1 which is used to remove concrete class type

1
Constructor difference is not a primitive construct of MLscript’s underlying type system, MLstruct [Parreaux

and Chau 2022]. Type A \ B is encoded in that type system as A & ~#B, where & is the type intersection operator, ~

is the type negation operator, and #B represents the nominal identity of class B, i.e., its raw type constructor without

7



constructors from a given type (here, 'b). This type operator applies incrementally, as its left-

hand side becomes concretely known upon type instantiation. For instance, after instantiating

the type variable 'b to, say, Add[Int] | Bool in the type above, 'b\Lit\Add becomes (Add[

Int] | Bool)\Lit\Add, which is equivalent to just Bool . Since all negative occurrences of 'b

(here, there is only one) are subject to this constructor difference, passing values for 'b which

are of the Lit or Add forms is effectively prevented, which ensures type safety
2
[Parreaux and

Chau 2022]. On the other hand, any other type constructor is allowed, for example, we could

call eval2(true), with inferred result type Int | Bool .

2.2 Open Recursion in MLscript with SuperOOP Mixins

Now let us consider putting our original evaluation function inside of a mixin , in order to enable

future extensions. To make the recursion of evaluation open, we now recurse through method

calls of the form ‘this.eval’ (here, ‘this’ is the class instance to be late-bound) instead of a

direct eval recursive function call:

mixin EvalBase {

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then this.eval(lhs) + this.eval(rhs) }

The type signature inferred for that mixin definition is the following:

mixin EvalBase: @ 'A. {

this: { eval: 'A Ñ Int }

eval: (Lit | Add['A]) Ñ Int

}

Above, 'A is a mixin-level type variable,3 meaning that it must be instantiated to a specific type

each time the mixin is inherited as part of a class. Since mixins do not introduce types on their

own, EvalBase cannot be used as a type. Using EvalBase as a type would be a problem because

there would be no definite type to replace 'A with in the signature of its eval method — so we

would not know how to type expressions such as x.eval when x has type EvalBase . Note that

'A can even be instantiated to several incomparable types within a single class, if EvalBase is

inherited several times.

What is interesting here is that MLscript infers a this type refinement (also called self type),

which specifies what the type of this should be for the mixin to be well-typed. Here, this

any fields or type parameters attached.

2
Perhaps counter-intuitively, we do not need to restrict the positive occurrences of 'b, as they are always

effectively unrestricted due to covariance. Consider a function of type ('b\Lit\Add) Ñ 'b. Substituting Mul

| Lit | Add for 'b results in ((Mul | Lit | Add)\Lit\Add) Ñ (Mul | Lit | Add), which is equivalent to

Mul Ñ (Mul | Lit | Add). This is a supertype of Mul Ñ Mul , which we could have obtained from substituting

Mul for 'b in the first place, so this type would have been reachable even after a “properly restricted” substitution

of 'b. In other words, it does not make much sense to restrict the positive occurrence of 'b and there is no practical

need for it.

3
We use uppercase names for mixin-level type variables and lowercase names for function-level ones.
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represents the final object obtained from the future mixin composition. Crucially, notice that

the type of eval is no longer recursive— indeed, it no longer contains a recursive ‘as’ binder. This

is because we have opened the recursion, and the type that is inferred for eval precisely specifies

what this partial definition accomplishes: it examines the top level of an expression and when

that expression is an Add, it calls eval open-recursively through this with the corresponding

subexpressions, expecting integer results from that recursive call.

Opening recursion in this way allows us to adapt this partially-specified recursive function

to different contexts, as we shall see shortly.

Closing back We can immediately tie the knot and obtain an implementation equivalent to

the original recursive function eval by defining a module that only inherits from EvalBase :

module SimpleLang extends EvalBase

whose inferred type signature is:

module SimpleLang: {

eval: (Lit | Add['a] as 'a) Ñ Int

}

Something important happened here: by creating the module SimpleLang from the previous

mixin, we effectively tie the recursive knot for the corresponding method. That is, to type check

Simple Lang , MLscript constrains the “open” polymorphic type variable 'A associated with eval

in EvalBase and instantiates it to the correct type to make the overall mixin composition type

check. More specifically, remember that eval as defined in EvalBase was given type (Lit |

Add['A]) Ñ Int assuming that this had type { eval: ('A) Ñ Int }. Here, we know that the

type of this is SimpleLang and that SimpleLang’s eval implementation is the one inherited

from EvalBase . So when constraining types to make the subtyping relation SimpleLang <: {

eval: ('A) Ñ Int } hold, this leads to constraining (Lit | Add['A]) Ñ Int <: ('A) Ñ

Int, which in turn leads to the constraint 'A <: (Lit | Add['A]). So MLscript instantiates the

type variable 'A to the principal solution, i.e the recursive type (Lit | Add['a]) as 'a, which

satisfies this recursive constraint.

Extending the operations Now consider extending our code for a new expression pretty-

printing method:

mixin PrettyBase {

fun print(e) = if e is

Lit(n) then toString(n)

Add(lhs , rhs) then this.print(lhs) ++ "+" ++ this.print(rhs) }

Mixin PrettyBase defines a print method for Lit and Add. Its inferred type is analogous to

that of EvalBase . This demonstrates that we can extend the operations performed on our simple

language, which is one of the extensibility directions considered by the Expression Problem.

9



Extending the data types Next, consider another direction of code extension — defining a

new expression constructor. We here define a negation expression type Neg:

class Neg[T](expr: T)

Now, the obvious question is how to extend some existing operations to this new data type

constructor in a way that is as general and modular as possible.

2.3 super-charging OOP with Polymorphic Mixins

As noticed by Garrigue [2000], it is often useful to define components that extend yet unknown

base implementations, so that the same components can be applied to different base implemen-

tations, and so that in general we can merge independently-defined languages together. This

is possible to do in MLscript by defining mixins that make use of this and super , as in the

following example:

mixin EvalNeg {

fun eval(e) =

if e is Neg(d) then 0 - this.eval(d)

else super.eval(e)

}

which can be written more concisely using the following syntax sugar:

mixin EvalNeg { fun eval(override Neg(d)) = 0 - this.eval(d) }

We can include this partial Neg-handling recursion step as part of any previously-defined base

implementation, such as our previous EvalBase . We get the following inferred type for EvalNeg ,

which precisely describes this property:

mixin EvalNeg: @ 'A 'B 'R . {

this: { eval: 'A Ñ Int }

super: { eval: 'B Ñ 'R }

eval: (Neg['A] | 'B\Neg) Ñ (Int | 'R)

}

We can see that the type signature of our mixin now includes a super refinement in addition to

the this refinement. This is the key to enabling polymorphic extension: when composing such

a mixin later on, MLscript will match up this super requirement with whatever implementation

is provided by the previous mixin implementations in the chain of mixin composition. Recursive

knots will only be tied when the mixin is composed as part of a class.

The PrettyNeg extension for pretty-printing is defined analogously.

Tying the knot again Finally, we can compose everything together as part of a new module:

module Lang extends

EvalBase , EvalNeg , PrettyBase , PrettyNeg

And here is the type signature inferred for this definition:

10



Figure 1: Solution to the Expression Problem in MLscript/SuperOOP.

module Lang: {

eval: (Lit | Add['a] | Neg['a] as 'a) Ñ Int

print: (Lit | Add['a] | Neg['a] as 'a) Ñ Str

}

We illustrate the mixins and their composition as our solution to the Expression Problem in

fig. 1. The arrows illustrate how the method calls via this and super are dispatched and why

the corresponding subtyping constraints on the arrows should be generated. The types in grey

are only for illustration purposes here, as they can be fully inferred.

Again, what happens here is important to consider. We are now tying the knot with respect

to both this and super in all the mixins making up the mixin inheritance stack:

• For this , as indicated by the pink arrow, eval call via this in the mixin EvalBase is

dispatched to the overriding implementation of eval in themixin EvalNeg , sowe constrain

that eval’s type in EvalNeg is a subtype of the required type of this.eval in EvalBase .

Similarly, we guarantee in the mixin EvalNeg that the type of eval satisfies the required

type of this.eval . And the same for the print method.

• For super , we make sure that the member types provided by the first mixin EvalBase

satisfy the super requirement of the second mixin EvalNeg by generating the subtyping

constraint in blue, because as shown by the blue arrow, eval call via super in the mixin

EvalNeg is dispatched to the overridden implementation of eval in EvalBase . After that,

we compute new member types based on EvalNeg’s contributions, before checking that

the resulting type satisfies the super requirement of the next mixin in line, PrettyBase ,

etc.

This results in the inferred recursive types in the green box, which precisely characterize what

shapes of data that Lang’s eval and print methods can handle.
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Polymorphic extensibility To demonstrate that our EvalNeg component is truly generic

over the existing implementation it is to be merged upon, we can define yet another mixin that

adds a new Mul language feature:

class Mul[T](lhs: T, rhs: T)

mixin EvalMul {

fun eval(override Mul(l, r)) = this.eval(l) * this.eval(r) }

And then we compose all of these mixins together in two possible orders (the order determines

which of Neg and Mul will be matched first):

module LangNegMul extends EvalBase , EvalNeg , EvalMul

module LangMulNeg extends EvalBase , EvalMul , EvalNeg

In both cases, the inferred signature is:

module LangNegMul: {

eval: (Lit | Add['a] | Neg['a] | Mul['a] as 'a) Ñ Int }

2.4 Pattern-Matching All the Way

To conclude this motivating example, we exemplify a capability of our system that most solu-

tions to the expression problem lack, with the notable exception of polymorphic variants (see

Section 5.1): the ability of pattern matching deeply inside subexpressions, which enables the def-

inition of optimization passes.

For instance, below we define an EvalNegNeg optimization which shortcuts the evaluation

of double negations, directly evaluating the doubly-negated expression instead:

mixin EvalNegNeg { fun eval(override Neg(Neg(d))) = this.eval(d) }

of inferred type:

mixin EvalNegNeg: @ 'A 'B 'C 'D . {

super: {eval: (Neg['A] | 'B) Ñ 'C}

this: {eval: 'D Ñ 'C}

fun eval: (Neg[Neg['D] | 'A\Neg] | 'B\Neg) Ñ 'C

}

This type deserves some explanation. The parameter type of eval is ‘Neg[Neg['D] | 'A \ Neg]

| 'B\Neg’, which describes the fact that:

• eval accepts either an instance of Neg or, failing that, a 'B that is not a Neg;

• If the argument is a Neg, then its type argument must itself be either a Neg or an 'A that

is not a Neg;

• If that nested type argument is a Neg, then its type argument must be 'D. Since this type

argument is passed to this.eval , we get the this refinement {eval: 'D Ñ 'C}.

• In case either the eval argument is not a Neg (so the argument is a 'B) or the eval argu-

ment is a Neg['A] where 'A is not a Neg, evaluation falls back to a super call, which is

translated into the super refinement {eval: (Neg['A] | 'B) Ñ 'C}.

12



This mixin can be merged onto any mixin stack to obtain the desired effect; for example:

module Lang extends EvalBase , EvalNeg , EvalMul , EvalNegNeg

In this case, it is important to mix in EvalNegNeg after EvalNeg in the inheritance stack, so that

the optimization semantics override the base semantics, and not the other way around. This is

a fundamental property of optimization passes: their composition order matters.
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Chapter 3

Core Language

In this section, we present an explicitly-typed core language that captures the core object-

oriented concepts of SuperOOP, leaving type inference aside. We first informally present the

key innovation and design concepts of SuperOOP’s object-oriented type system and then define

𝜆super, a minimal declarative and explicitly-polymorphic calculus.

3.1 Design Concepts

Interfaces, mixins, and classes Interfaces, mixins, and classes are three orthogonal building

blocks that model OOP in our system. Interfaces define a set of method signatures. For an

object conforming to an interface, it should support all the methods specified in that interface.

Contrary to classes and mixins, which in our core language have no types, we associate each

interface with its own type. Mixins provide implementations for methods. Classes, finally,
implement interfaces through a linear composition of mixins and a set of parameters which

represents the state of the object.

Interface inheritance As in most OOP languages, existing interfaces can be extended with

additional methods through interface inheritance. A child interface may inherit from several

parent interfaces (i.e., we supportmultiple inheritance of interfaces). Moreover, a child interface

may override parent method signatures with refined signatures, as determined by the subtyping

relation. As an example, consider the following interface composition:

interface I1 { a: S }; interface I2 { a: T }; interface I3 extends I1, I2

Method a’s signature in the composed interface I3 is the intersection of the inherited signatures,

i.e. S & T. Intersection types enable precise multiple interface inheritance, since they are used as

greatest lower bounds of the inherited type signatures, which alsomakes the composed interface

a subtype of all inherited interfaces.

Mixin composition SuperOOPmixins are compositional and reusable building blocks to con-

struct classes. They provide partial method implementations that, when composed together, are
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checked to satisfy the interface that the class is meant to conform to. A mixin composition is

simply a list of mixins. Each mixin in a mixin composition overrides not only method imple-

mentations but also method types inherited from previous mixins. So the type of a method may

change along the mixin composition, but the type system ensures that the typing assumptions

made by each implementation (in the form of this and super refinements) are satisfied. This

also explains whymixins are not considered types (unlike, e.g., Scala traits): the fact that a mixin

is present in the inheritance clause of a class does not imply that the resulting object will offer

methods with types comparable to the ones provided by the mixin. Consider the following ex-

ample with generics, where Option is the usual option type with constructors Some and None

(here, implements { foo: ... } is a shorthand for defining an unnamed interface and adding it

to the implements clause):

mixin Foo { fun foo: Int = 1 }

mixin Bar[A] {

super: { foo: A }

fun foo: Option[A] = new Some[A]( super.foo)

}

class ClsFoo extends Foo , Bar[Int], Bar[Option[Int]]

implements { foo: Option[Option[Int]] }

Generic mixin Bar[A] overrides the implementation of foo by wrapping the parent implemen-

tation of foo (i.e. super.foo) with the Some constructor. Importantly, Bar[A] has the type of

super refined as { foo: A }, which gives super.foo type A. In this example, mixin Bar[Int]

overrides method foo of type Int in mixin Foo, and Bar[Option[Int]] overrides foo of type

Option[Int] provided by the inherited mixin composition (Foo , Bar[Int]).

Precisely-Typed Open Recursion A crucial feature of OOP, open recursion is the ability for

a method to invoke itself or another method via a late-bound this instance, which may lead to

evaluating overriding implementations. In most OOP languages with inheritance, the type of

this is the current class’ type. In these languages, method invocations on this are safe because

overriding implementations from subclasses can only refine the types of overriddenmethods. By

contrast, in SuperOOP, methods are overridden regardless of types, and the actual type of this

is only decided when the mixin composition is finalized as part of a class definition. Therefore,

a precise type specification for this is necessary for open recursive calls in mixin methods.

Importantly, this type refinement can be polymorphic at the mixin level, being instantiated at

mixin composition time (i.e., upon being used as part of a class definition). Such polymorphism

allows for later extensions to the shapes of data types that a method may be made to work on,

as described in chapter 2. Consider the following example:

mixin Mxn1 {

this: { a: Str }

fun a: Boolean = (this.a == "42")

}

mixin Mxn2 { fun a: Str = "42" }

class Cls extends Mxn1 , Mxn2 implements { a: Str }
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Names, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and terms

Class name 𝐶

Mixin name 𝑀, 𝑁

Interface name 𝐼 , 𝐽

Field name 𝑚, 𝑝

Type 𝑆,𝑇 ,𝑈 ,𝑉 ::“ 𝑋,𝑌 | 𝐼 r𝑇 s | 𝑆 Ñ 𝑇 | @𝑋 . 𝑇 | 𝑆 & 𝑇 | Object

Term 𝑒 ::“ 𝑥, 𝑦 | this | super | 𝜆𝑥 : 𝑇 . 𝑒 | Λ𝑋 . 𝑒

| 𝑒1 𝑒2 | 𝑒 𝑇 | 𝑒.𝑚 | new 𝐶r𝑇 sp𝑒q

Interfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classes

Structural type R ::“ t𝑚 : 𝑇 u

Implementation I ::“ t𝑚 : 𝑇 “ 𝑒 u

Top-level definition D ::“

Interface 𝐼 r𝑋 s Ÿ 𝐽 r𝑇 sR

Mixin | 𝑀r𝑋 sR𝑇 I

Class | 𝐶r𝑋 sp𝑚 : 𝑇 q Ÿ 𝐼 r𝑇 s, 𝑀r𝑇 s

Program P ::“ D ; 𝑒

Figure 2: Syntax of 𝜆super.

Method a has type Boolean in mixin Mxn1 . The annotated precise type of this gives this.a

type Str in Mxn1 , allowing string comparison in a’s implementation. Mixin Mx2 provides a’s

implementation of type Str. Class C implements a: Str by themixin composition (Mxn1 , Mxn2

). The inheritance of Mxn1 is allowed since the interface that class Cls implements matches the

annotated this type in Mxn1 . In Mxn2 , we could still access the super implementation of a in

Mxn1 by refining the type of super .

3.2 Formal Syntax

We now introduce the 𝜆super calculus, a formalization of SuperOOP. The design of this calcu-

lus is inspired by Featherweight Generic Java [Igarashi et al. 2001] and Pathless Scala [Martres

2021]. Throughout our formalization, we use the notation 𝐸𝑖
𝑖P𝑛..𝑚

to denote the repetition of

syntax form 𝐸𝑖 with index 𝑖 from 𝑛 to 𝑚. We use 𝐸 as a shorthand when 𝑖 is not necessary

for disambiguation. Moreover, we use r𝑇 {𝑋 s to denote the conventional capture-avoiding sub-

stitution of a list of type parameters 𝑋 (which can possibly be empty) to 𝑇 . In definitions of

metafunctions, we use ∅ as a default vacuous result.

16



𝑆 ă: 𝑇

S-Refl

𝑇 ă: 𝑇

S-Top

𝑇 ă: Object

S-Interface

𝑆 P parentsp𝐼 r𝑇 sq

𝐼 r𝑇 s ă: 𝑆

S-Inv

𝑆 ă: 𝑇 𝑇 ă: 𝑆

𝐼 r𝑆s ă: 𝐼 r𝑇 s

S-Andl

𝑆1 & 𝑆2 ă: 𝑆1

S-Andr

𝑆1 & 𝑆2 ă: 𝑆2

S-And

𝑆 ă: 𝑇1 𝑆 ă: 𝑇2

𝑆 ă: 𝑇1 & 𝑇2

S-Trans

𝑆 ă: 𝑈 𝑈 ă: 𝑇

𝑆 ă: 𝑇

S-Arrow

𝑆2 ă: 𝑆1 𝑇1 ă: 𝑇2

𝑆1 Ñ 𝑇1 ă: 𝑆2 Ñ 𝑇2

S-Forall

𝑆 ă: 𝑇

@𝑋 . 𝑆 ă: @𝑋 . 𝑇

Figure 3: Declarative subtyping.

The syntax of 𝜆super is presented in Figure 2. Meta-variables 𝑆,𝑇 ,𝑈 ,𝑉 range over types,

which include type variables, interfaces with a list of type arguments, arrow types, univer-

sally quantified types, intersection types, and the top type Object. For terms 𝑒 , there are term

variables 𝑥 and 𝑦. this and super are akin to term variables with special treatment. We have

standard explicitly-typed lambda abstractions and term applications, as well as type abstraction

and type application terms. Method invocation and access to object fields share a single syn-

tax: we consider access to object fields as method invocation. Objects are created with a new
keyword with term and type arguments supplied.

The top-level definitions of 𝜆super are interfaces, mixins, and classes. Every interface 𝐼 r𝑋 s

has a type parameter list r𝑋 s, a structural refinement R, and inherits multiple parent interfaces

𝐽 r𝑇 s. A structural refinement R contains a list of method signatures𝑚 : 𝑇 that specify methods’

names and types. Mixins, parametrized by type parameters, providemethod implementationsI.
Crucially, each mixin has a structural refinement R attached to super and a type 𝑇 for this for
precise typing of open recursion. Finally, a class has a class-level type parameter list, immutable

object fields, an interface it implements, and a mixin composition 𝑀r𝑇 s that provides method

implementations. A program consists in a list of top-level definitions and a term that accesses

them. For all top-level definitions, we require the standard well-formedness conditions that all

names are uniquely defined and no class transitively inherits itself. In later rules, we assume

terms’ access to the underlying top-level definitions.

3.3 Static Semantics

We present the static semantics of 𝜆super which includes a declarative subtyping, term typing,

and well-formedness check of top-level definitions.

Declarative subtyping Figure 3 shows the declarative subtyping of 𝜆super. Most rules are

unsurprising. Rule S-Interface describes that an interface is a subtype of its parent interfaces.

Auxiliary function parentsp𝐼 r𝑇 sq (defined in Figure 9 of Appendix A.1) returns the list of parent

interfaces. For simplicity, we consider that interfaces are invariant in their type parameters (rule

S-Inv).
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Typing context Γ ::“ 𝜖 | Γ, 𝑥 : 𝑇 | Γ, super : R | Γ, this : 𝑇

Γ $ 𝑒 : 𝑇

T-Var

Γp𝑥q “ 𝑇

Γ $ 𝑥 : 𝑇

T-This

Γpthisq “ 𝑇

Γ $ this : 𝑇

T-Abs

Γ, 𝑥 : 𝑆 $ 𝑒 : 𝑇

Γ $ 𝜆𝑥 : 𝑆. 𝑒 : 𝑆 Ñ 𝑇

T-TAbs

Γ $ 𝑒 : 𝑇

Γ $ Λ𝑋 . 𝑒 : @𝑋 . 𝑇

T-App

Γ $ 𝑒1 : 𝑆 Ñ 𝑇 Γ $ 𝑒2 : 𝑆

Γ $ 𝑒1 𝑒2 : 𝑇

T-TApp

Γ $ 𝑒 : @𝑋 . 𝑆

Γ $ 𝑒 𝑇 : r𝑇 {𝑋 s𝑆

T-Access

Γ $ 𝑒 : 𝑇 mtypep𝑚,𝑇 q “ 𝑆

Γ $ 𝑒.𝑚 : 𝑆

T-Super

Γpsuperq “ R
mrefnp𝑚,Rq “ 𝑆

Γ $ super.𝑚 : 𝑆

T-New

vparamsp𝐶r𝑇 sq “ 𝑚𝑖 : 𝑈𝑖

𝑖P1..𝑛

Γ $ 𝑒𝑖 : 𝑈𝑖

𝑖P1..𝑛
ctypep𝐶r𝑇 sq “ 𝑉

Γ $ new 𝐶r𝑇 sp𝑒𝑖
𝑖P1..𝑛

q : 𝑉

T-Sub

Γ $ 𝑒 : 𝑆

𝑆 ă: 𝑇

Γ $ 𝑒 : 𝑇

Given that interface 𝐼 is defined as 𝐼 r𝑋 s Ÿ 𝐽 r𝑈 s R:

mtypep𝑚, 𝐼 r𝑇 sq “

$

&

%

r𝑇 {𝑋 s𝑆 if p𝑚 : 𝑆q P R

𝑆 if𝑚 R R and mtypep𝑚,&r𝑇 {𝑋 s𝐽 r𝑈 sq “ 𝑆

mtypep𝑚, 𝑆 & 𝑇 q “

$

’

’

’

&

’

’

’

%

𝑈 & 𝑉 if mtypep𝑚, 𝑆q “ 𝑈 and mtypep𝑚,𝑇 q “ 𝑉

𝑈 if mtypep𝑚, 𝑆q “ 𝑈 and mtypep𝑚,𝑇 q “ ∅

𝑉 if mtypep𝑚, 𝑆q “ ∅ and mtypep𝑚,𝑇 q “ 𝑉

mtypep𝑚,𝑇 q “ ∅ otherwise

Figure 4: Term typing.

Term typing Figure 4 lists the typing rule of terms. Γ $ 𝑒 : 𝑇 is the term typing relation.

A typing context Γ maps term variables to types, super to a structural refinement, and this to
a type. The typing rules for term variables (T-Var), lambda and type abstractions (T-Abs and

T-TAbs), term and type applications (T-App andT-TApp), as well as the subsumption rule (T-Sub),

are standard. Note that since super is not bound to a type (but to a structural refinement) in

typing contexts, super itself will never be assigned a type, whichmatches the usual semantics of

super that it should only receive method calls but not be passed around. The typing of method

invocations is separated into two cases. If the receiver is a term (other than super) that has a
type, we look up the method signature in the receiver’s type. Function mtypep𝑚,𝑇 q computes

method 𝑚’s signature from type 𝑇 . Otherwise, if the receiver is super, we directly read the

method type from its associated structural refinement using function mrefnp𝑚,Rq (defined in

Figure 9 of Appendix A.1). To type class instantiation (T-New), we check that all constructor

argumentsmatch the types of the class fields returned by function vparamsp𝐶r𝑇 sq, and the object
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𝑀 ok

MixinCheck

𝑀r𝑋 sR𝑇 t𝑚 : 𝑆 “ 𝑒 u

@p𝑚 : 𝑆 “ 𝑒q P 𝑀 . this : 𝑇, super : R $ 𝑒 : 𝑆

𝑀 ok

𝐼 ok

InterfaceCheck

𝐼 r𝑋 s Ÿ 𝐽 r𝑇 s t𝑚 : 𝑆 u 𝐽 ok

@p𝑚 : 𝑆q P 𝐼 .mtypep𝑚,&𝐽 r𝑇 sq “ ∅ or

#

mtypep𝑚,&𝐽 r𝑇 sq “ 𝑈

𝑆 ă: 𝑈

𝐼 ok

𝐶 ok

ClassCheck

𝐶r𝑋 sp𝑝 : 𝑇 q Ÿ 𝐼 r𝑈 s, 𝑀𝑖r𝑈
1s
𝑖P𝑛..1

𝐼 ok 𝑀𝑖 ok 𝑀𝑖 ñ 𝐶 @𝑚 P mnamesp𝐼 r𝑈 sq .

$

’

’

&

’

’

%

mtypep𝑚, 𝐼 r𝑈 sq “ 𝑆

searchp𝑚, 0,𝐶q “ 𝑉

𝑉 ă: 𝑆

𝐶 ok

𝑀𝑖 ñ 𝐶

InheritCheck

𝐶r𝑋 sp𝑝 : 𝑈 1q Ÿ 𝐼 r𝑈 s, 𝑀𝑖r𝑉 s
𝑖P𝑛..1

𝑀𝑖r𝑌 sR𝑇 I

𝐼 r𝑈 s ă: r𝑉 {𝑌 s𝑇 @p𝑚 : 𝑆q P R .

#

searchp𝑚, p𝑖 ` 1q,𝐶q “ 𝑆 1

𝑆 1 ă: r𝑉 {𝑌 s𝑆

𝑀𝑖 ñ 𝐶

Figure 5: Well-formedness check of top-level definitions and mixin inheritance check.

has interface type ctypep𝐶r𝑇 sq of the class (vparams and ctype are defined in Figure 9).

The design of mtype basically follows that of Pathless Scala [Martres 2021]. When a method

signature is present in an interface, we directly return it. Otherwise, we search parent interfaces

by calling mtype with the intersection of all parent interfaces (denoted as &𝐽 r𝑈 s). Note that

nullary intersection is Object. To compute a method signature from an intersection type, we

recursively consider both sides of the intersection. When both types define the method, we take

the intersection of corresponding results.

Well-formedness of top-level definitions Figure 5 shows the well-formedness check of

mixins, classes, and interfaces. We put name lookup results of those structures as premises in

the rules. The first premises of rules in Figure 5 are the case.

Well-formed mixins To check a mixin (𝑀 ok), we check that every method implementation

can be typed at its signature with precise types of this and super in the context. Note that we

bind this to a typewhile super to a structural refinement in eachmixin. This syntactic difference
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is rooted in the semantic difference between them. People often call super a “pseudo-variable”
because it is merely a reference to call methods inherited from the parent class or mixin. In

SuperOOP, the parent mixin in the composition hierarchy does not define an object type, and

super should not be passed around, so it is enough to give super a structural method refinement

to tell what types the overridden methods should have. On the other hand, this is late-bound
to an object that has a type, can be passed around, and receives method calls. Hence this is
annotated with a type, and the annotated type should be a supertype of the later defined class’s

type.

Well-formed interfaces An interface is well-formed (𝐼 ok) when its parent interfaces are all

well-formed. A method signature should either be newly introduced (i.e., mtypep𝑚,&𝐽 r𝑇 sq “

∅), or have a subtype of the intersection of all𝑚’s signatures in parents (i.e.,mtypep𝑚,&𝐽 r𝑇 sq “

𝑈 ).

Well-formed classes Class well-formedness check (𝐶 ok) considers the following aspects:

1. The implemented interface and each mixin in the mixin composition are well-formed.

2. Open-recursive calls via this in the mixin composition are safe: the class type is a subtype

of each mixin’s this type annotation.

3. Themixin composition is correct: eachmixin’s structural refinement on super is satisfied.

4. The interface is satisfied: the class has all methods (and fields, as we uniformly treat fields

and methods) required, and their signatures conform to the interface.

For 1., 𝐼 ok checks the interface, and 𝑀 ok checks each mixin. Relation 𝑀𝑖 ñ 𝐶 implements

mixin inheritance check which deals with 2. and 3.. It checks if the inheritance of the 𝑖-th mixin

in class𝐶’s mixin composition is correct. Note that the index 𝑖 here ranges in 𝑛..1 (as𝑀𝑖r𝑆s
𝑖P𝑛..1

),

which means syntactically, the rightmost mixin in the mixin composition is the first one. Rule

InheritCheck guarantees that, first, this type of the 𝑖-th mixin should be a supertype of the

interface that the class conforms to, which satisfies 2.. Second, for each method𝑚’s signature in

the structural refinement of super, the parent mixin composition provides a compatible imple-

mentation. Specifically, the type of𝑚’s implementation provided by mixins ranging in 𝑛..p𝑖 `1q

(computed by searchp𝑚, p𝑖`1q,𝐶q, defined in Figure 6 and explained later) should be a subtype of

the 𝑖-th mixin’s super refinement on𝑚, which satisfies 3.. To satisfy 4., for eachmethod name𝑚

defined in the interface (computed by mnames, defined in Figure 9 of Appendix A.1), its imple-

mentation type provided by the class fields or mixin composition (computed by searchp𝑚, 0,𝐶q)

should be compatible with the signature specified by the interface (computed by mtype).

Method implementation type search Figure 6 defines function searchp𝑚, 𝑖,𝐶q to search the

implementation type of𝑚 provided by fields or mixins ranging in 𝑛..𝑖 . When 𝑖 “ 0, it searches
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Given that class 𝐶 is defined as 𝐶r𝑋 sp𝑚 𝑗 : 𝑇𝑗 q Ÿ 𝐼 r𝑆 1s, 𝑀𝑖r𝑆s
𝑖P𝑛..1

,

and mixin𝑀𝑖 is defined as𝑀𝑖r𝑌 sR
𝑉
I:

searchp𝑚 𝑗 , 0,𝐶q “

$

&

%

𝑇𝑗 if𝑚 𝑗 : 𝑇𝑗 P 𝑚 𝑗 : 𝑇𝑗

𝑈 if𝑚 𝑗 R 𝑚 𝑗 : 𝑇𝑗 and searchp𝑚 𝑗 , 1,𝐶q “ 𝑈

searchp𝑚, 𝑖,𝐶q “

$

&

%

r𝑆{𝑌 s𝑈 if 0 ă 𝑖 ď 𝑛 and p𝑚 : 𝑈 “ 𝑒q P I

𝑈 if 0 ă 𝑖 ď 𝑛 and𝑚 R I and searchp𝑚, 𝑖 ` 1,𝐶q “ 𝑈

searchp𝑚, 𝑖,𝐶q “ ∅ otherwise

Figure 6: Method implementation type search function.

class fields for the method name𝑚. If𝑚 is not implemented by fields, the search continues with

the first mixin (𝑖 “ 1). For the 𝑖-th mixin, the search directly returns the method signature if

𝑚 is implemented in the current mixin. Otherwise, it continues with the parent mixin (indexed

p𝑖 ` 1q). The search returns ∅ if 𝑖 exceeds the length of class 𝐶’s mixin composition (𝑖 ą 𝑛),

which means that𝑚 is not implemented in the class so the method implementation search fails.

3.4 Dynamic Semantics

Figure 7 lists the syntax of values, results, and runtime contexts, and lists the evaluation rules

that produce values (the rules that produce runtime errors are omitted and can be found in

Figure 10 in appendix A.1). The big-step evaluation judgment Ξ $ 𝑒 ó 𝑟 denotes that term

𝑒 evaluates to result 𝑟 under runtime context Ξ. The result of evaluation may be a normal

value or an error. Values are either closures or objects. A runtime context Ξ binds values to

term variables and a configured object to this. A configured object t𝑖 ‹ 𝐶r𝑇 sp𝑣qu is a pair of an

object and a natural number 𝑖 called the search index. This index directs the search for method

implementation in the object fields and mixin composition at runtime. The evaluation rules for

variables and term applications are standard. For type applications, we use a type substitution in

the semantics, which will be no-op at runtime as all generic types are erasable — only class tags

are used at runtime, which are concrete types that need no substitution. Note that the evaluation

rule for this simply reads the configured object from the context and returns a plain object (i.e.,

with no search index). Class instantiations produce objects. Lambda and type abstractions are

evaluated to closures. Note that 𝜆super would not need a value restriction [Wright 1995] even if

we added imperative effects to it, because it does not evaluate under polymorphic abstractions.

This is different from the real MLscript language, which does need a value restriction as it uses

ML-style polymorphism.

Method invocation and access to fields Proper modeling of method invocation and access

to fields are of our particular interest. The following procedure explains the overall idea:
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Value 𝑣,𝑤 ::“ x𝜆𝑥 : 𝑇 . 𝑒, Ξy | xΛ𝑋 . 𝑒, Ξy | 𝐶r𝑇 sp𝑣q

Runtime context Ξ ::“ 𝜖 | Ξ, 𝑥 ÞÑ 𝑣 | Ξ, this ÞÑ t𝑖 ‹𝐶r𝑇 sp𝑣qu

Result 𝑟 ::“ val 𝑣 | err

Ξ $ 𝑒 ó 𝑟

E-Var

Ξp𝑥q “ 𝑣

Ξ $ 𝑥 ó val 𝑣

E-This

Ξpthisq “ t𝑖 ‹𝐶r𝑇 sp𝑣qu

Ξ $ this ó val 𝐶r𝑇 sp𝑣q

E-App

Ξ $ 𝑒1 ó val x𝜆𝑥 : 𝑇 . 𝑒, Ξ1y

Ξ $ 𝑒2 ó val 𝑣 Ξ1, 𝑥 ÞÑ 𝑣 $ 𝑒 ó val 𝑣 1

Ξ $ 𝑒1 𝑒2 ó val 𝑣 1

E-TApp

Ξ $ 𝑒 ó val xΛ𝑋 . 𝑒 1, Ξ1y

r𝑇 {𝑋 sΞ1 $ r𝑇 {𝑋 s𝑒 1 ó val 𝑣

Ξ $ 𝑒 𝑇 ó val 𝑣

E-Abs

Ξ $ 𝜆𝑥 : 𝑇 . 𝑒 ó val x𝜆𝑥 : 𝑇 . 𝑒, Ξy

E-TAbs

Ξ $ Λ𝑋 . 𝑒 ó val xΛ𝑋 . 𝑒, Ξy

E-New

vparamsp𝐶r𝑇 sq “ 𝑚𝑖

Ξ $ 𝑒𝑖 ó val 𝑣𝑖

Ξ $ new 𝐶r𝑇 sp𝑒𝑖q ó val 𝐶r𝑇 sp𝑣𝑖q

E-Access

Ξ $ 𝑒 ó val 𝐶r𝑆sp𝑣q

pthis ÞÑ t0 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó val 𝑣 1

Ξ $ 𝑒.𝑚 ó val 𝑣 1

E-ArgMiss

Ξpthisq “ t0 ‹𝐶r𝑆sp𝑣qu 𝑚 R vparamsp𝐶r𝑆sq

pthis ÞÑ t1 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó val 𝑣 1

Ξ $ super.𝑚 ó val 𝑣 1

E-ArgHit

Ξpthisq “ t0 ‹𝐶r𝑆sp𝑣𝑖qu

vparamsp𝐶r𝑆sq “ 𝑚𝑖 : 𝑈𝑖

Ξ $ super.𝑚𝑖 ó val 𝑣𝑖

E-SuperMiss

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu 𝑖 ą 0

𝑚 R methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó val 𝑣 1

Ξ $ super.𝑚 ó val 𝑣 1

E-SuperHit

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu 𝑖 ą 0

p𝑚 : 𝑈 “ 𝑒q P methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ 𝑒 ó val 𝑣 1

Ξ $ super.𝑚 ó val 𝑣 1

Given that class 𝐶 is defined as 𝐶r𝑋 sp...q Ÿ 𝐼 r𝑈 1s, 𝑀𝑖r𝑈 s
𝑖P𝑛..1

,

and mixin𝑀𝑖 is defined as𝑀𝑖r𝑌 sR
𝑉

t𝑚 : 𝑇 “ 𝑒 u:

methodsp𝑖,𝐶r𝑆sp𝑣qq “ p𝑚 : r𝑆{𝑋 sr𝑈 {𝑌 s𝑇 “ r𝑆{𝑋 sr𝑈 {𝑌 s𝑒 q

Figure 7: Big-step operational semantics producing values.
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1. When the receiver is a term (modulo super), we first evaluate the term to an object and

search through the object’s fields for the method implementation (E-Access).

2. If the invoking method is not provided by any object field, we traverse the mixin compo-

sition of the class (E-ArgMiss).

3. If the invoking method is provided as an object field, we return the value bound to the

field (E-ArgHit).

4. If the invoking method is not implemented by the 𝑖-th mixin, we search the next mixin in

the composition hierarchy (E-SuperMiss). Helper function methodsp𝑖,𝐶r𝑆sp𝑣qq (defined

in Figure 9 of Appendix A.1) returns all method implementations of the 𝑖-th mixin.

5. If the invoking method is implemented by the 𝑖-th mixin, we evaluate the method body

with this bound to the configured object where the search index points to the parentmixin

(E-SuperHit).

Configured object t𝑖 ‹𝐶r𝑆sp𝑣qu is bound to this in the context; it specifies the object in which

we search for method implementations as well as the current level of that search. When the

configuring index is nil (𝑖 “ 0), we search the object fields. Otherwise (𝑖 ą 0), we search the

𝑖-th mixin, counting from the rightmost composed mixin of the object’s class.

In rule E-Access, we evaluate the receiver to an object and trigger method implementa-

tion search by evaluating super.𝑚 with this bound to the object configured by 0, i.e., we start

the search with the object fields. Two sets of Miss/Hit rules evaluate method invocations on

super. Rules E-ArgMiss/Hit consider the object fields. If the method name is found in the

constructor parameter list of the class (computed by vparams), the corresponding value is re-

turned. Otherwise, we search the mixin composition by incrementing the configuring index to

1 and recursively evaluating super.𝑚. Rules E-SuperMiss/Hit deal with method calls on super
when the configuring index is non-zero. If the method𝑚 is implemented in the 𝑖-th mixin, we

evaluate the method body. If the implementation is missing, we search the next mixin by in-

crementing the configuring index to 𝑖 ` 1. Note that it is safe to drop the context (save for the

binding of the configured object to this) in rules E-ArgMiss and E-SuperMiss since the method

body is always evaluated under a context containing only a binding from this to the configured
object. If the method search fails, an error is produced. We do not need the call-site runtime

environment in either case.

3.5 Metatheory

Wenow develop themetatheory of 𝜆super. We follow Ernst et al.’s approach to prove type sound-

ness of our big-step style semantics. Different from soundness proof for small-step semantics,

runtime error and divergence both lead to the non-existence of evaluation derivation in a big-

step semantics. Therefore, soundness proof of big-step semantics requires special treatment to
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𝑣 : 𝑇

VT-Abs1

Γ ( Ξ Ξpthisq “ t𝑖 ‹𝐶r𝑈 sp𝑣qu

R ( t𝑖 ‹𝐶r𝑈 sp𝑣qu

Γ, 𝑥 : 𝑆, super : R $ 𝑒 : 𝑇

x𝜆𝑥 : 𝑆. 𝑒, Ξy : 𝑆 Ñ 𝑇

VT-TAbs1

Γ ( Ξ Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

R ( t𝑖 ‹𝐶r𝑆sp𝑣qu

Γ, super : R $ 𝑒 : 𝑇

xΛ𝑋 . 𝑒, Ξy : @𝑋 . 𝑇

VT-Object

vparamsp𝐶r𝑇 sq “ 𝑚 : 𝑈

𝑣 : 𝑈 ctypep𝐶r𝑇 sq “ 𝑉

𝐶r𝑇 sp𝑣q : 𝑉

VT-Abs2

Γ ( Ξ this R 𝑑𝑜𝑚pΓq

Γ, 𝑥 : 𝑆 $ 𝑒 : 𝑇

x𝜆𝑥 : 𝑆. 𝑒, Ξy : 𝑆 Ñ 𝑇

VT-TAbs2

Γ ( Ξ this R 𝑑𝑜𝑚pΓq

Γ $ 𝑒 : 𝑇

xΛ𝑋 . 𝑒, Ξy : @𝑋 . 𝑇

VT-Sub

𝑣 : 𝑆

𝑆 ă: 𝑇

𝑣 : 𝑇

Γ ( Ξ

C-ConsVar

Γ ( Ξ 𝑣 : 𝑇

Γ, 𝑥 : 𝑇 ( Ξ, 𝑥 ÞÑ 𝑣

C-ConsThis

Γ ( Ξ 𝐶r𝑆sp𝑣q : 𝑇

Γ, this : 𝑇 ( Ξ, this ÞÑ t𝑖 ‹𝐶r𝑆sp𝑣qu

C-Nil

𝜖 ( 𝜖

R ( t𝑖 ‹𝐶r𝑆sp𝑣qu

𝐶r𝑋 sp𝑛 : 𝑇 1q Ÿ 𝐼 r...s, 𝑀r...s @ p𝑚 : 𝑇 q P R .

#

searchp𝑚, 𝑖,𝐶q “ 𝑈

r𝑆{𝑋 s𝑈 ă: 𝑇

R ( t𝑖 ‹𝐶r𝑆sp𝑣qu

Figure 8: Value typing of closures.

model divergence of term evaluation, discriminating runtime error and divergence. To solve the

problem, an evaluation result is first divided into two: a value or a runtime error. The static type

system should guarantee that, if a well-typed term evaluates to a result, it is always a value,

and the result value preserves the term’s type. This is called preservation. To handle divergence,

evaluation is indexed by fuel. Each step of evaluation consumes one unit of fuel. When the fuel

runs out, the evaluation terminates and returns a timeout result. This means we may always

construct a finite derivation when evaluating any term. When a term evaluates to a timeout

result regardless of fuel amount, it is said to diverge. Now we can model soundness of big-step

semantics: a well-typed term evaluates to a value or it diverges. Note that preservation itself

does not lead to soundness. To guarantee that any term evaluates to a result, we need a coverage

lemma to rule out the situation when a term cannot be evaluated because of missing evaluation

rules (preservation is vacuously true in this case). With both preservation and coverage, we

have type soundness for a big-step semantics.

Value typing Our metatheory focuses on strong soundness, that is, we need to type values

to ensure that the evaluation result keeps the type. Value typing rules of closures are listed

in Figure 8. Rule VT-Abs1 types lambda abstraction body under a typing context Γ with the

term variable bound to the input type and super refined by a structural refinement R. Here
we perform two consistency checks. First, the typing context should be consistent with the

runtime context (Γ ( Ξ), i.e., each term variable is bound to a value that matches the variable’s
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type in the typing context. Second, to guarantee that calls to super implementations are always

safe, the structural refinement R giving precise types to calls on super in the closure body

should be consistent with the configured object in the closure’s context. Relation R ( t𝑖 ‹

𝐶r𝑆sp𝑣qu implements the second consistency check, which examines each method signature’s

compatibility with the method implementation type provided by the configured object. Rule

VT-Abs2 deals with the case when this is unbound in closure’s runtime context. In this case,

no open-recursive calls are allowed in the lambda abstraction body, and the typing is standard.

Rules VT-TAbs1/2work similarly on type abstraction closures. The object typing rules are non-

surprising.

Soundness Wefinally show the soundness results of our formal calculus. The complete proofs

can be found in appendix A.2. For a program P, we denote its top-level definitions as DP and

the associated term as 𝑒P . The preservation lemma is stated below:

Lemma 3.1 (Preservation). If DP ok and 𝜖 $ 𝑒P : 𝑇 and 𝜖 $ 𝑒P ó 𝑟 then 𝑟 “ val 𝑣 and 𝑣 : 𝑇 .

We define the finite evaluation relation [Ernst et al. 2006] here to augment our big-step se-

mantics with fuel.

Definition 3.2 (Finite evaluation). Define an evaluation relation Ξ $ 𝑒 ó𝑘 𝑟`
(where 𝑟`

::“

𝑟 | kill, and 𝑘 is the step-counting index, i.e. fuel) with evaluation rules copied from Ξ $ 𝑒 ó 𝑟 .

For each rule, ó in the conclusion is replaced by ó𝑘 , and ó in premises is replaced by ó𝑘´1.

Also, propagate timeout result of subderivations (the corresponding rules are listed in fig. 12 of

appendix A.1). Finally, add the following axiom:

E-Timeout

Ξ $ 𝑒 ó0 kill

The soundness theorem of our calculus follows from the preservation lemma that rules out

errors when evaluation terminates and the coverage lemma that ensures our evaluation rules

with finite fuel always produce a result.

Lemma 3.3 (Coverage). For all 𝑛, Ξ, and 𝑒 , there exists an 𝑟` such that Ξ $ 𝑒 ó𝑛 𝑟
`.

Definition 3.4 (Expression divergence). 𝑒 diverges fi For all 𝑛, 𝜖 $ 𝑒 ó𝑛 kill.

Theorem 3.5 (Soundness). If DP ok and 𝜖 $ 𝑒P : 𝑇 then (1) 𝜖 $ 𝑒P ó val 𝑣 and 𝑣 : 𝑇 , or (2) 𝑒P
diverges.
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Chapter 4

Discussion

We now discuss the expressiveness, limitations, and implementation of SuperOOP as presented

in this thesis.

4.1 Expressiveness and Limitations

Thanks to the clear separation of concerns between the orthogonal concepts of interfaces, mix-

ins, and classes, and thanks to the flexibility of mixins, SuperOOP not only captures standard

OOP features but can also be used to explain existing advanced OOP models.

Desugaring traditional classes A classic OOP class is desugared into three SuperOOP core

language components: (a) a core-language class for its fields; (b) a core-language mixin for its

implementations; and (c) a core-language interface for its method signatures. Although our core

language does not directly support class inheritance, this feature can easily be desugared into

SuperOOP. For example, recall ColoredPoint from chapter 1, which inherited from class Point .

This class hierarchy can be desugared to SuperOOP as:

interface IPoint { x: Int; y: Int }

class Point(x: Int , y: Int) implements IPoint

interface IColoredPoint extends IPoint , Colored

class ColoredPoint(x: Int , y: Int , color: Color) implements IColoredPoint

Multiple inheritance and linearization Languages that support multiple inheritance usu-

ally have a linearizationmechanism that determines the order of inherited parent classes, traits,

or mixins. The underlying assumption is that each parent can only be inherited at most once, so

if a parent transitively occurs more than once in an inheritance clause, the linearization mech-

anism removes all but its first occurrence. Consequently, linearization affects the semantics of

method resolution and super-calls. For example, Scala uses linearization for its multiple trait

inheritance system [Odersky et al. 2004]. The linearization of a Scala class definition of the
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form class C extends B0, B1, ..., B𝑛 starts with B0’s linearization and appends to it the lin-

earization of B1 save for those traits that are already in the constructed linearization of B0, etc.

Several languages such as Python adopt the influential C3 linearization algorithm [Barrett et al.

1996]. Although SuperOOP does not natively support multiple class inheritance, we can still

apply any linearization algorithms used by existing languages and desugar the result using core

SuperOOP classes, interfaces, and mixins. On the other hand, in SuperOOP, one can inherit a

given mixin an arbitrary number of times at different positions in the mixin inheritance stack.

The resolution of method invocations simply follows the order of inherited mixins, which do

not necessarily need to be linearized. So SuperOOP’s approach is more general.

Example encoding of Scala trait inheritance The following example shows the idea of

encoding Scala multiple trait inheritance in SuperOOP. Consider the following simple Scala

code:

trait A { def a = 0 }

trait L extends A { override def a = 42 }

trait R(foo: Int) extends A { override def a = foo }

class LR(foo: Int) extends L, R(2 * foo)

There is a base trait A and two derived traits L and R overriding the base implementation of a.

Note that R accesses its trait parameter. In SuperOOP, we can equivalently have:

mixin A { fun a = 0 }

mixin L { fun a = 42 }

interface I$R { foo$R: Int }

// R accesses its local parameter via a unique name

mixin R { this: I$R; fun a = this.foo$R }

interface I extends I$R { foo$LR: Int }

// R's local parameter is finally provided by the class

mixin $R { this: I; fun foo$R = this.foo$LR * 2 }

// LR is composed by the linearization of LR in Scala

class LR(foo$LR: Int) extends I, A, L, R, $R

Mixin parameters Mixin parameters are a powerful extension to the core SuperOOP lan-

guage presented in this thesis. They for instance allow one to define flexible and efficient stream-

ing processing abstractions that are composed through mixins, as in the following:

module MyPipeline extends

Map(x => x + 1),

Filter(x => x % 2 == 0),

Map(x => x * 2)

We use two instances of Map in the mixin composition above, showing that using this refine-

ments to encode mixin parameters would not be sufficient, as each of these two Map instances

needs to be given a different argument. Mixin parameters are implemented in MLscript/Super-

OOP, but we omitted this extension from 𝜆super for simplicity.
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Member access control We have not yet modeled in the core language nor implemented any

notions of encapsulation and visibility, such as the private and protected modifiers. We expect

that modeling these features should be straightforward, as their design is mostly orthogonal to

the features of SuperOOP.

4.2 Implementation in MLscript

We now briefly describe our implementation and possible alternative implementation strategies.

Compilation to JavaScript MLscript currently compiles to JavaScript, which supports classes

as first-class entities. This means it is possible to define mixins directly, by using functions. For

instance, the EvalNeg and EvalMul mixins and the LangNegMul class mentioned in chapter 2

are essentially compiled into the following JavaScript code:

function mkEvalNeg(base) {

return class EvalNeg extends base {

eval(e) {

if (e instanceof Neg) return 0 - this.eval(e.expr)

else return super.eval(e) } }

}

function mkEvalMul(base) {

return class EvalMul extends base {

eval(e) {

if (e instanceof Mul) return this.eval(e.lhs) * this.eval(e.rhs)

else return super.eval(e) } }

}

class LangNegMul extends mkEvalMul(mkEvalNeg(EvalBase))

One side effect of this straightforward implementation is that mixins in MLscript can be in-

herited an arbitrary number of times and that no inheritance linearization is needed. MLscript

classes, on the other hand, follow the usual single-inheritance hierarchy discipline, which is

useful for type checking pattern matching and inferring simple types for it.

Compilation to other targets We are also considering adding alternative compilation back-

ends to MLscript, such as backend compilers targeting WebAssembly and the Java Virtual Ma-

chine. In that context, we can still follow the general JavaScript-based semantics described

above, but we will make sure to evaluate the mixin functions at compilation time, to guaran-

tee optimal performance and simple compilation. Super calls would then be resolved statically,

allowing for efficient target code. Therefore, our approach to mixin composition should offer

better performance than alternative solutions to the expression problem which rely on closure

compositions and thus require virtual dispatch, like the approach of Garrigue [2000]. However,

we reserve a rigorous performance evaluation for future work.
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Separate compilation An aspect of the Expression Problem as originally stated is that it

should be possible to compile each extension separately before putting them all together. We

can essentially achieve this even in the static compiler scenario by separately compiling method

implementations and composing classes whose methods simply forward to these pre-compiled

implementations. This is more or less the approach used by Scala for traits, which was shown

to be practical in real-world scenarios.

Type inference Our proposed novel OOP model SuperOOP is the latest evolution of the

MLscript programming language, which enables our elegant solution to the Expression Prob-

lem, as shown in chapter 2. MLscript and its underlying core type system MLstruct [Parreaux

and Chau 2022] feature principal polymorphic type inference for structural types, i.e., types

with functions, records, first-class unions and intersections, enabling extensible variants with-

out needing row polymorphism. MLstruct itself evolved from a simplified take [Parreaux 2020]

on the groundbreaking algebraic subtyping approach [Dolan 2017], whereby an algebraic take

on the semantics of types enables principality of type inference, notably without backtracking

in the type checker, which helps with the scalability of our approach.

Case studies In Appendix B, we provide case studies of MLscript/SuperOOP that include a

modular evaluator of extended lambda calculus, as described by Garrigue [2000], and a sim-

ple “regions” DSL presented by Sun et al. [2022] and inspired by Hudak [1998] and Hofer et

al. [2008]. These case studies showcase the flexibility of SuperOOP polymorphic mixins, the

ability to handle mutually-recursive functions across different mixins, interpret complex data

types, and optimize domain-specific languages via built-in nested pattern matching. Addition-

ally, thanks to MLscript’s powerful principal type inference [Parreaux and Chau 2022], those

case studies type check without the help of a single type annotation (except for class field defi-

nitions).
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Chapter 5

Related Work

In this chapter, we compare our approach to related work.

5.1 Solutions to the Expression Problem

There is a sea of work in extensible programming that address the Expression Problem, based on

techniques such as polymorphic variants [Garrigue 1998] in OCaml, recursive modules [Nakata

and Garrigue 2006] in ML, new programming paradigms [Carette et al. 2009; Oliveira and Cook

2012] like Compositional Programming [Zhang et al. 2021], and covariant class field type refine-

ment in Scala [Wang and Oliveira 2016]. We survey a few of them by showing their solutions

to the Expression Problem and discuss various design tradeoffs with respect to the approach of

SuperOOP.

Polymorphic Variants The polymorphic variant solution [Garrigue 2000] probably comes

closest to our approach. Open recursion there is implemented by way of an explicit parameter

for recursive calls, and by manually tying the recursive knots. For example, one defines an

open-recursive base implementation of evaluation on two expression data types as follows:

let eval_base eval_rec = function

| `Lit(n) Ñ n

| `Add(e1, e2) Ñ eval_rec e1 + eval_rec e2

(* val eval_base :

('a Ñ int) Ñ [< `Add of 'a * 'a | `Lit of int ] Ñ int *)

Polymorphic variants differ from traditional variants or algebraic data types (ADTs) in that

polymorphic variants allow the use of arbitrary constructors without a corresponding data type

definition; they can be thought of as ADTs that are “not fully specified” and thus allow fur-

ther extension. In the example above, two constructors `Lit and `Add are introduced. Func-

tion eval_base takes a first parameter eval_rec for open-recursive calls and the expression to

evaluate as a second parameter. Parameter eval_rec accepts expressions with type 'a, and the

expression is required to have type [< `Add of 'a * 'a | `Lit of int ], which allows either

an `Add expression containing nested subexpressions of type 'a, or a `Lit instance with an
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integer payload. Extending this base evaluator with new operations is done by composing it in-

side new functions. To extend the supported expression forms, one defines another evaluation

implementation that works, e.g., on negations:

let eval_ext eval_rec = function

`Neg(e) Ñ 0 - eval_rec e

(* val eval_ext : ('a Ñ int) Ñ [< `Neg of 'a ] Ñ int *)

Finally, one needs to tie both implementations together:

type 'a expr_base = [`Lit of int | `Add of 'a * 'a]

type 'a expr_ext = [`Neg of 'a]

let rec eval = function

| #expr_base as x Ñ eval_base eval x

| #expr_ext as x Ñ eval_ext eval x

(* val eval :

([< `Add of 'a * 'a | `Lit of int | `Neg of 'a ] as 'a) Ñ int *)

Function eval dispatches the evaluation of the base and extended data types to the two eval-

uation sub-implementations, and it ties the recursive knots by passing itself as the entry point

of the recursion. Note that eval has an inferred recursive type that accepts an expression re-

cursively constructed by the three variants. Compared with our solution, from a programming

style perspective, one programswith polymorphic variants in a functional way, while SuperOOP

adopts a more object-oriented style. More importantly, polymorphic variants suffer from sev-

eral practical drawbacks, including loss of polymorphism and approximated typing of pattern

matching [Castagna et al. 2016]. Those drawbacks can be fixed by embracing “proper” implicit

subtyping as in MLscript [Parreaux and Chau 2022]. In particular, we argue that union types

are simpler than row polymorphism, which imperfectly emulates subtyping through unification

[Parreaux and Chau 2022].

OCaml’s Object System In OCaml class definitions, one can annotate “self” with a type sig-

nature and define “super” explicitly in a way that superficially looks similar to SuperOOP. One

may be tempted to try and encode precise typing of open recursion in OCaml, to enable exten-

sible programming with classes. However, this does not work due to OCaml’s use of unification

and its lack of subtyping: the self and super types are unified with the object type being defined,

and thus all three must exactly coincide. By contrast, SuperOOP mixins allows different self

and super types and allows overriding methods with different types, which is crucial for our

technique. For example, we first define a base class with the receiver’s type refined:

class ['a] base = object (self: < eval: 'a Ñ int; .. >)

method eval = function

| `Lit n Ñ n

| `Add(a, b) Ñ self#eval a + self#eval b end

(* class ['a] base :

object

constraint 'a = [< `Add of 'a * 'a | `Lit of int ]

method eval : 'a Ñ int

end *)
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Note that the recursive knot of the expression type has already been tied as OCaml generates

a constraint that 'a = [< `Add of 'a * 'a | `Lit of int ]. If we try to extend the base

class with evaluation on a new data type variant, OCaml will raise a unification error:

class ['a] ext = object (self) inherit ['a] base as super

method eval = function

| `Neg e Ñ 0 - self#eval e

| e Ñ super#eval e end

(* Error: This pattern matches values of type [> `Neg of 'a ]

but a pattern was expected which matches values of type

[< `Add of 'b * 'b | `Lit of int ] as 'b

The second variant type does not allow tag(s) `Neg *)

Here OCaml tries to unify the type of eval in the base and extended implementation, i.e., this

#eval and super#eval . The unification fails as super#eval’s type is already closed, that is,

it only accepts expressions constructed by Add and Lit, but this#eval is trying to match ex-

pressions of type [> `Neg of 'a ]. One may fix this unification error by extending pattern

matching of the base implementation with a default case, therefore opening the type of eval

in the base class. However, statically this fix will make the base implementation accept any

expression variant that may not be handled by derived implementations.

Featherweight Generic Go Go is a popular programming language developed by Google.

Featherweight Go (FG) and its generic version Featherweight Generic Go (FGG) proposed by

Griesemer et al. [2020] are formal developments of Go with the goal of helping “get polymor-

phism right”. FGG provides a solution to the Expression Problem based on generics and covari-

ant matching of method receiver type refinements, as in:

func (e Plus(type a Evaler)) Eval() int {

return e.left.Eval() + e.right.Eval()

}

Method Eval is generic in type variable ‘a’ which is upper-bounded by interface Evaler . Once

dissociated from the quantification of a, the receiver type of the method is Plus(a), the type

of a Plus instance with subexpressions of type ‘a’. To extend the supported operations in the

encoded language, one may define a similar pretty-printing method. Finally, one combines the

interfaces for different interpretations together in a final expression type:

type Expr interface {

Evaler

Stringer

}

Type Expr composes two operations together, so it implements both of Evaler and Stringer

(an interface for stringification). One can build and use such expressions as follows:

var e Expr = Plus(Expr){Lit{1}, Lit {2}}

var result Int = e.Eval()

var pretty string = e.String ()

While this allows FGG to solve the Expression Problem, the features that enable this solution (i.e.
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covariant receiver type refinements) are not part of the Go team’s current design for generics

[Griesemer et al. 2020]. Moreover, the inspection of data structures only happens at the outer-

most level. If one wants to deeply transform an expression instance, that is, to inspect its inner

structure and, for example, perform optimizations on it, one would have to make an additional

method to delegate the inspection semantics itself. This approach, called delegated method pat-

terns in Sun et al.’s work [Sun et al. 2022], is non-modular in FGG as it requires adding a new

method for each inner structure inspection and to implement this method for each constructor

of the data type, even those constructors that should otherwise fall into a default case of the

encoded pattern matching, like in the following example encoding:

type Normer(type a Normer(a)) interface {

Norm() a

NormDele () a

}

func (e Lit) Norm() Lit {

return e

}

func (e Lit) NormDele () Neg(Lit) {

return Neg(Lit){e}

}

func (e Neg(type a Normer(a))) Norm() a {

return e.expr.NormDele ()

}

func (e Neg(type a Normer(a))) NormDele () a {

return e.expr

}

type Expr interface {

Evaler

Stringer

Normer(Expr)

}

Neg(Expr){Neg(Expr){Lit {1}}}. Norm().Eval()

However, this encoding does not really work in the presented FGG system and its implementa-

tion as Lit is not considered to implement Expr , because its Norm implementation is not exactly

returning Expr .

Object Algebras Object Algebras are a well-known object-oriented approach to solve the Ex-

pression Problem [Oliveira and Cook 2012]. The key to this solution is an abstract factory called

object algebra interface, which contains data type constructor signatures, leaving their interpre-

tation unspecified. An object algebra interface for expressions could be, in Scala syntax:
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trait ExpAlg[Exp] {

def Lit: Int => Exp

def Add: (Exp , Exp) => Exp

}

Trait ExpAlg specifies two data type constructors, and it is parameterized by type parameter

Exp that indicates the interpretation of expression data types. We can implement evaluation on

expressions by implementing the object algebra interface:

trait IEval { def eval: Int }

trait Eval extends ExpAlg[IEval] {

def Lit = n => new IEval { def eval = n }

def Add = (e1,e2) => new IEval { def eval = e1.eval + e2.eval }

}

Trait Eval is an object algebra which implements ExpAlg with the type parameter instantiated

to IEval . Trait IEval indicates that expressions can be evaluated to integers. To extend the lan-

guage with new operations, we may simply define a new interpretation type and a correspond-

ing object algebra interface implementation. On the other hand, for new data type extensions,

we inherit the object algebra interface and the old implementation:

trait NegAlg[Exp] extends ExpAlg[Exp] {

def Neg: Exp => Exp

}

trait EvalNeg extends NegAlg[IEval] with Eval {

def Neg = (e) => new IEval { def eval = 0 - e.eval }

}

We can now define an expression instance and instantiate the language:

trait exp[Exp](f: NegAlg[Exp]) {

f.Add(f.Lit(1), f.Neg(f.Lit(-1)))

}

object eval extends EvalNeg

println(exp(eval).eval)

In trait exp, the data type constructors are accessed through the input object algebra f. With

different implementations of the object algebra interface passed in, the expression will be in-

terpreted in different ways. However, as noticed by Zhang et al. [2021], one needs to create

an expression instance for each data type interpretation, and there is no built-in approach to

composing interpretations in different object algebras. Moreover, as data type constructors are

specified through type signatures in object algebra interfaces, there is no way to have an in-

spectable representation of language instances without a complete definition of abstract syntax,

blocking useful extensions such as modular transformations and optimizations.

Compositional Programming Compositional programming [Zhang et al. 2021] (implemented

in the CP language) is a novel programming paradigm that features modularity. It supports a

merge operator as the introduction term for intersection types. At the type level, the intersection

type operator composes interfaces. At the term level, the merge operator composes first-class

traits that contain data and operations. Similarly to Object Algebras, in Compositional Pro-
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gramming, a compositional interface specifies data type signatures, leaving their interpretation

unspecified, and concrete interpretations are defined in first-class traits:

type ExpSig <Exp > = {

Lit : Int Ñ Exp;

Add : Exp Ñ Exp Ñ Exp;

};

type Eval = { eval : Int };

evalNum = trait implements ExpSig <Eval > => {

(Lit n).eval = n;

(Add e1 e2).eval = e1.eval + e2.eval;

};

Trait evalNum implements the compositional interface ExpSig <Eval > which specifies that Lit

and Add support an evaluationmethod. Similarly, one can implement a pretty-printing operation

by adding another concrete interpretation. To extend the expression language with new data

types, one extends the compositional interface and implements new operations in derived traits.

Finally, everything is tied together with the merge operator as shown below:

type NegSig <Exp > extends ExpSig <Exp > = {

Neg : Exp Ñ Exp Ñ Exp;

};

evalNeg = trait implements NegSig <Eval > inherits evalNum => {

(Neg e).eval = 0 - e.eval;

};

exp Exp = trait [self : NegSig <Exp >] => {

test = new Neg (new Add (new Lit 1) (new Lit 2));

};

// Assume pretty -printing of expression is analogously defined

e = new evalNeg ,, printNeg ,, exp @(Eval & Print);

Trait exp contains an example expression. The self type annotation in square brackets en-

ables the trait body to access the three data type constructors. With the merge operator, trait

instance e is composed of traits that contain different expression interpretations and the test

trait. Note that trait Exp is passed with an intersection type argument Eval & Print , meaning

the expression language supports both evaluation and pretty-printing.

In recent follow-up work on Compositional Programming by Sun et al. [2022], different as-

pects of domain-specific language embedding are investigated, including the two-direction ex-

tensibility of language constructs and their interpretations, transformations and optimizations

on language instances, etc. To illustrate the comparison of our approach’s expressiveness re-

garding DSL embeddings, we adapted Sun et al. [2022]’s comparison table as in Table 1, where

we added the last row and column in green. Since Compositional Programming does not na-

tively support nested pattern matching (unlike our approach), deep inspection of data is only

possible via the delegated method pattern (discussed above in the paragraph of Featherweight

Generic Go), which is “not as convenient”, as the authors put it and the half circles in the “Comp.”

column of the table. We also argue that this does not work well for defining optimizations passes

in a modular way. Indeed, optimizations are fundamentally order-sensitive, and encoding them
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Table 1: A comparison of different DSL embedding approaches, adapted from Sun et al. [2022]’s

Table 1. We added the last row and column in green to the original table.

Shallow Deep Hybrid Poly. Comp. Ours

Transcoding free   #    

Linguistic reuse  #    #

Language construct extensibility  # G#    

Interpretation extensibility #      

Transformations and optimizations #   G# G#  

Linguistic reuse after transformations n/a # #   #

Modular dependencies # G# G# #   

Nested pattern matching #   # G#  

Modular optimization passes #   # #  

in terms of CP’s unordered patterns requires non-local transformations of the involved pattern

matching structures. For instance, one cannot independently define separate optimization passes

for evaluating Neg(Neg(e)) as e and Neg(Lit(n)) as Lit(0 - n), whereas doing so inMLscript/-

SuperOOP and approaches that allow defining ordered transformation passes on data structures

is straightforward, therefore the last row. MLscript/SuperOOP does not need to translate code

into different representations, and by precisely typing this , we support expressing dependen-

cies of methods across mixins, and by nested pattern matching as a language-level feature, we

enjoy modular data structure transformation and optimization. Due to having language data

structures as objects (as “deep” DSL embedding [Boulton et al. 1992]), it is not straightforward

for our approach to have “linguistic reuse” [Krishnamurthi and Felleisen 2001]. We propose

to remedy this as a future work direction discussed in section 6.2. For further details of this

comparison table, we refer interested readers to Sun et al. [2022]’s paper.

Approaches lacking type safety It is much easier to solve the Expression Problem if one

no longer cares about catching composition errors at compilation time. Zenger and Odersky

[2001] propose to use exception-throwing default cases in base implementations and to over-

ride these cases in further extensions, which relies on the programmer remembering to override

all default cases and to pass only supported expression forms to the various methods in the pro-

gram. Similar to SuperOOP, in a method that defines the interpretation of extended data types

and overrides the base interpretation, they delegate the interpretation of base data types to the

overridden method using super . While just as flexible as SuperOOP, this approach is funda-

mentally unsafe and error-prone. Going further, at the other end of the spectrum, approaches

such as monkey-patching and Julia-style multiple dispatch allow completely dynamic updates

of base implementations, which trivially supports extension but is anti-modular, as reasoning

about the well-foundedness of method calls on given argument types requires global knowledge

of all extension points in the program and libraries.
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5.2 Modeling Inheritance and Reuse

In this subsection, we discuss previous work related to modeling inheritance and code reuse.

In their seminal Inheritance Is Not Subtyping paper, Cook et al. [1989] introduced the crucial

idea that inheritance could be unrestrained if it was decoupled from the subtyping relationship.

However, they do not provide a specific source language in which to realize their ideas and only

describe an imagined typed encoding of it, without an obvious way of connecting that encoding

back to a hypothetical source language.

Bracha and Cook [1990] describe both a Smalltalk-style approach and a CLOS-style multiple

inheritance approach for modeling single inheritance and super . The paper uses a notion of

implementation “deltas” Δ, which are not first-class and only used for explanation. In our ap-

proach, this notion of deltas exists as a first-class entity which we callmixins. Bracha and Cook

describe mixins as a form of abstraction (over an unknown base class), and linearization as ap-

plication (wiring in all the base classes), by analogy with the classical lambda calculus concepts.

In our approach, abstraction is similarly done through super and application is done through

extends , but we do not require linearization and allow mixins to be inherited an arbitrary num-

ber of times. While Bracha and Cook leverage the notion that subtyping is not inheritance and

allow the types of methods to change, they do not support the idea of precise this and super

annotations and thus cannot precisely type open recursion.

The concept of “mixin” described by Flatt et al. [2006, 1999, 1998] is related to ours, but con-

ceptually different. While they do model super , their mixins necessarily conform to interfaces

and are thus constrained to specific method signatures, preventing SuperOOP-style modular

programming. The authors discuss the possibility of solving the EP with modules and their

mixins in later work [Findler and Flatt 1998], but without proposing a static typing model.

Schärli et al. [2003] study and discuss many perceived problems with mixin composition.

They suggest that traits are a better unit of abstraction. We agree that traits are useful for ar-

chitecting OOP code in the large, but argue that mixins are independently useful: abstract (i.e.,

open-ended) base classes are specifically what unlocks the expressiveness of mixin inheritance

and our new solution to the Expression Problem. We believe that mixins should be conceptu-

alized as pure whitebox implementation bundles (the implementation itself being the API) by

contrast with interfaces, which hide implementation detail, and traits, which enable a form of

well-behaved (associative and commutative) multiple inheritance, and that all three could have

a place in an OO programmer’s toolkit.

The idea of separating reusable components from types was previously embraced by Bettini

et al. [2013], who argue that the role of units of reuse and the role of types are competing, as also

observed by Cook et al. [1989] and Snyder [1986]. The semantics of Bettini et al.’s trait systems

are similar to Schärli et al.’s but provide additional flexibility, in that traits are composed with

explicit operations on methods such as renaming and exclusion to resolve conflict. A similar

idea is used by Damiani et al. [2017] in their design of a language enabling both trait reuse and
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deltas of classes, in the context of Software Product Line Engineering.

Type classes as in languages like Haskell [Peyton Jones 2003] and Scala [Oliveira et al. 2010]

also provide data abstraction and powerful parametrization and extensibility [Cook 2009]. Su-

perOOP’s super is a way of nesting interpretations the same way one can design dependent

type class instances. Any class hierarchy encoded solely with super refinements in SuperOOP

translates straightforwardly to classic type classes. However, type classes per se are not enough

for modular code reuse with recursive data structures, as that requires open recursion. As Oleg

Kiselyov put it in his lecture on modular tagless-final interpreters [Kiselyov 2012]:

To be able to extend our de-serializer, we have to write it in the open recursion style. It

is a bit unfortunate that we have to anticipate extensibility; alas, open recursion seems

unavoidable for any extensible inductive de-serializer.

Explicit encodings of open recursion can be implemented in Haskell and Scala, but these would

live outside of the type class definitions and are orthogonal to type classes. By contrast, Super-

OOP directly provides precisely-typed open recursion via this refinements in mixins.

5.3 Big-Step Semantics and Its Soundness

Due to being close to an interpreter, big-step semantics have been proposed as a more natural

and informative way of formalizing program semantics. We found that it is particularly appro-

priate once the language starts deviating significantly from simple variations of pure lambda

calculus. In particular, the representation of super method lookup, which relies on having a

configured object bound in the current runtime context, would be particularly easier to formalize

using big-step semantics. Dagnino et al. [2020] describes a great overview of modeling diver-

gence and proof of type soundness of big-step semantics. Amin and Rompf’s work [Amin and

Rompf 2017] proves soundness of F-sub in a big-step semantics. Jeremy Siek’s article is a good

short introduction to prove type safety of big-step semantics using fuel.
1
It summarizes:

In general, the solutions to proving big-step soundness seem to fall into three categories:

(1) introduce a separate co-inductive definition of divergence for the language in ques-

tion; (2) develop a notion of partial derivations; and (3) a time counter that causes a

time-out error when it gets to zero. — that is, make the semantics step-indexed.

Our approach follows Ernst et al. [2006] who utilized fuel. Ernst et al. also provided a clear

explanation of why fuel (and the separation of stuck terms from divergent terms) is necessary

in their paper.

1http://siek.blogspot.com/2012/07/big-step-diverging-or-stuck.html
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Chapter 6

Conclusion and Future Work

We presented a new approach to OOP which cleanly separates the concerns of state, imple-

mentations, and interfaces into the orthogonal constructs of classes, mixins, and interfaces. We

showed that a refined typing of mixins allows for a new and powerful solution to the expression

problem. We presented an implementation in MLscript, leveraging its flexible type inference

capabilities to enable annotation-free modular programming.

Finally, we discuss future work directions on a trait system with extensible and open variant

types, mixin families, and open classes.

6.1 Traits with Extensible Variants

As we discussed in section 4.1, any multiple trait inheritance system with linearization (such as

Scala traits) can be encoded as SuperOOPmixins with the corresponding linearization algorithm

applied. Taking a step further, thanks to SuperOOP-style precise typing of open recursion and

MLscript’s structural type system with first-class intersection and union types [Parreaux and

Chau 2022], we can design a powerful trait system that supports users to provide open vari-

ant type definitions, methods with type annotations of those variant types, and extensions to

the open variant types inherited from parent traits. This trait system can be type checked by

elaborating to SuperOOP mixins as we have presented in this paper. Below we showcase a min-

imal lambda calculus evaluator programmed with such traits and its desugaring to mixins. Our

example is inspired by the motivating example of Kravchuk-Kirilyuk et al. [2024].

Surface trait system The base language of thisminimal lambda calculus has variables, lambda

abstractions, and units as values. Expressions are values and applications of expressions. The

data types are defined as the following classes and module:
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class Var(x: Str)

class Lam[E](x: Str , e: E)

module Unit

class EVal[V](v: V)

class EApp[E](e1: E, e2: E)

Now we define the evaluation method that takes in expressions and returns an option of

values in a trait LCBase . In this trait, extensible variant types are defined as open types that are

referenced in two different ways, as in:
trait LCBase {

open type Val = Unit | Var | Lam[this.Exp]

open type Exp = EVal[this.Val] | EApp[this.Exp]

virtual fun eval(e: Exp): Option[this.Val] =

if e is

EVal(v) then Some(v)

EApp(e1, e2) then this.eval(e1).flatMap(f => this.apply(e2, f))

fun apply(e2: this.Exp , f: this.Val): Option[this.Val] =

if f is

Lam(x, e) then this.eval(this.subst(x, e2, e))

else None

// substitutions of expressions and values omitted

}

Val and Exp are open type definitions. They are defined as union types. Open types are subject

to further extensions. In the current trait, references to the open type itself (as Exp, for example)

are interpreted as the union of variants defined exactly in this trait (EVal and EApp), whereas

references via this (as this.Exp) are abstract types that represent the union of all the variants,

including the yet unknown variants introduced in traits that inherit the current one, and they

are only known when the trait inheritance hierarchy is finalized, so the type arguments of EApp

and Eval are qualified with this because they are potentially nesting unknown variant types

that are defined later. For method eval , it is annotated as virtual because it only matches

on the expression of type Exp which includes the variants that are defined locally in this trait.

Method eval is subject to future overrides that handle more variant extensions. On the other

hand, method apply handles all possible values of variants introduced in future extensions, as

it inspects f of type this.Val, so it does not need to be virtual and a default else case is

necessary.

Then we consider extending the language with boolean values and if-expressions:

module True

module False

class EIf[E](e: E, e1: E, e2: E)

And the following trait definition:
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trait LCIf extends LCBase {

Val += True | False

Exp += EIf[this.Exp]

virtual fun eval(e: Exp): Option[this.Val] =

if e is

EIf(e, e1, e2) then eval(e).flatMap(b => branch(e1, e2, b))

else super.eval(e)

fun branch(e1: this.Exp , e2: this.Exp , b: this.Val): Option[this.Val] =

if b is

True then this.eval(e1)

False then this.eval(e2)

else None

}

module LC extends LCIf

Trait LCIf extends the base trait LCBase . The new variants of values and expressions are added

to base types Val and Exp with a += operator. The type argument of EIf is this.Exp as Exp

may include more variants, and eval is virtual because it only handles a variant of Exp that

is currently defined, i.e. EIf. Note that Exp is now extended with +=, so in eval we delegate

handling of other base expression variants to the overridden eval definition by calling super

.eval . Similar to LCBase.apply , branch handles all possible values of this.Val, so it is not

virtual .

Desugaring traits to SuperOOPmixins We now translate the traits shown above to mixins.

Trait LCBase is desugared as (method implementations omitted):

mixin LCBase[ValExt <: ~(#Unit | #Var | #Lam),

ExpExt <: ~(#EApp | #EVal)] {

type LCBase#Val = Unit | Var | Lam[LCBase#ThisExp]

type LCBase#ThisVal = LCBase#Val | ValExt

type LCBase#Exp = EVal[LCBase#ThisExp] | EApp[LCBase#ThisExp]

type LCBase#ThisExp = LCBase#Exp | ExpExt

fun eval(e: LCBase#Exp): Option[LCBase#ThisVal] = ...

fun apply(e2: LCBase#ThisExp , f: LCBase#ThisExp):

Option[LCBase#ThisVal] = ...

}

References to open types are translated into references to local type synonyms. Val is trans-

lated to the union type LCBase#Val that only includes variants defined locally, while this.Val

is translated to LCBase#ThisVal extended with other variants, as the union of LCBase#Val and

the mixin-level type parameter ValExt . The upper bounds on the type parameters for variant

type extensions disallow redefining existing variants parameterized by different type arguments

in extensions of this trait, which is necessary to type check non-virtual methods such as apply .
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Desugaring of the extension trait LCIf is similar, while we need more mixin-level type param-

eters as base variant types (such as ValBase and ExpBase shown below):

mixin LCIf[ValBase , ExpBase ,

ValExt <: ~(#True | #False), ExpExt <: ~#EIf] {

type LCIf#Val = True | False | ValBase & ~(True | False)

type LCIf#ThisVal = LCIf#Val | ValExt

type LCIf#Exp = EIf[LCIf#ThisExp] | ExpBase & ~EIf

type LCIf#ThisExp = LCIf#Exp | ExpExt

fun eval(e: LCIf#Exp): Option[LCIf#ThisVal] = ...

fun branch(e1: LCIf#ThisExp , e2: LCIf#ThisExp , b: LCIf#ThisVal): Option[

LCIf#ThisVal] = ...

}

Finally, the lambda calculus evaluator can be instantiated as module LC that inherits mixins

LCBase and LCIf , which supports evaluation of all types of expressions to values:

type ExpFinal = EVal[ValFinal] | EApp[ExpFinal] | EIf[ExpFinal]

type ValFinal = Uni | Var | Lam[ExpFinal] | True | False

module LC extends LCBase[True | False , EIf[ExpFinal]],

LCIf [Uni | Var | Lam[ExpFinal],

EVal[ValFinal] | EApp[ExpFinal],

Uni | Var | Lam[ExpFinal],

EVal[ValFinal] | EApp[ExpFinal ]]

The mixin type arguments provided here can indeed be inferred by MLscript. Note that for

LCBase , its expression variant extension is EIf; for LCIf , the base variants and extensions of

expressions are both EVal and EApp , which are handled in the overridden mixin LCBase .

6.2 Mixin Families and Open Classes

Mixin families The other main item of future work we would like to look into is the deep

composition of mixin families [Ernst 2001], reminiscent of Delta-Oriented Programming [Dami-

ani et al. 2017; Schaefer et al. 2010] but with precisely-typed open recursion, as exemplified by

the following code:

mixin Base {

class Foo(x: Int)

}

mixin Derived1 {

mixin Foo { fun get = this.x + 1 }

}

mixin Derived2 {

mixin Foo { fun get = super.get * 2 }

}

whose inferred types would be:
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class Base: {

class Foo(x: Int): {}

}

mixin Derived1: {

mixin Foo: {

this: { x: Int }

get: Int

}

}

mixin Derived2 {

mixin Foo: {

super: { get: Int }

get: Int

}

}

An example usage of this could be, for instance:

class Final extends Base , Derived1 , Derived2

Final.Foo(3).get // 8

Cached interpretation with open classes Consider the following code adapted from the

“linguistic reuse” example of Sun et al. [2022]:

fun go(x) =

if x is 0 then Lit(1)

else

let shared = go(x - 1)

Add(shared , shared)

The execution of eval(go(𝑛)) requires 2𝑛 computation time because, in SuperOOP, embedded

language data types are represented by class definitions, that is, data structures are objects. The

evaluation of the shared expression nodes is repeated when interpreting Add, even though the

shared node itself is indeed shared on both sides of the Add node. Such representation is known

as initial embeddings [Carette et al. 2009] or deep embeddings [Boulton et al. 1992] of eDSLs. On

the contrary, if the expression language was implemented as a host language library, i.e. Lit and

Add were endofunctions of integers and shared was an integer, when interpreting an expression

constructed by the go function above, the shared variable would just hold the interpretation

result, so the computation time would be linear in 𝑛. Such representation is called shallow

embeddings which automatically reuses host language optimizations like the sharing behavior

in this example [Jovanovic et al. 2014; Sun et al. 2022].

We could avoid repeated computations and reuse the interpreted results in SuperOOP by

caching these results in the expression data types. With open classes as extensible base classes,

we can modularly add new cached interpretations, as exemplified below:
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trait Base {

sealed class Exp

}

trait Example extends Base {

class Lit(n: Int) extends Exp

class Add(lhs: this.Exp , rhs: this.Exp) extends Exp

fun go(x) = ... // as defined above

val exp = go(10)

}

trait CacheSize extends Example {

Exp += { lazy val size: Int }

Lit += { size = n }

Add += { size = lhs.size + rhs.size }

}

module Lang extends CacheSize

Lang.exp.size

The data type classes in trait Example extend an open class Exp, which is sealed as it is sealed

within the inheritance hierarchy of this trait. Exp can be incrementally extended with method

signatures of new cached interpretations of expressions, and the data type classes extending it

are required to implement the new interpretations.
1
To modularly extend the language with

pretty-printing, we could have:

trait CachePrint extends Example {

Exp += { lazy val print: String }

Lit += { print = n }

Add += { print = lhs.print ++ rhs.print }

}

module Lang' extends CacheSize , CachePrint

Lang'.exp.size

Lang'.exp.print

We envision that this future work will recover linguistic reuse for deep embeddings, while

allowing modular data structure optimization through pattern matching and precise typing of

open recursion, thus bringing us closer to “the holy grail of embedded language implementa-

tion”, as remarked by Svenningsson and Axelsson [2015]:

The holy grail of embedded language implementation is to be able to combine the ad-

vantages of shallow and deep in a single implementation.

1
In MLscript, we can implement class members by only providing their implementations as required by the

type, without repeating the declarations.
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Appendix A

Auxiliaries and Proofs

A.1 Auxiliaries

Figure 9 shows auxiliary definitions of 𝜆super. Figure 10 and Figure 11 show big-step evaluation

rules that produce and propagate error (err) results. Figure 12 shows finite big-step evaluation

rules (defined by definition 3.2) that propagate timeout (kill) results.

A.2 Metatheory of 𝜆super

A.2.1 Preservation

Subtyping

Lemma A.1. The following forms of subtyping derivation are impossible:

• 𝐼 r𝑉 s ă: t𝑆 Ñ 𝑇, @𝑋 .𝑈 , 𝑌u

• 𝑆 Ñ 𝑇 ă: t@𝑋 .𝑈 , 𝐼 r𝑉 s, 𝑌u

• @𝑋 .𝑈 ă: t𝑆 Ñ 𝑇, 𝐼 r𝑉 s, 𝑌u

• 𝑌 ă: t𝐼 r𝑉 s, 𝑆 Ñ 𝑇, @𝑋 .𝑈 u

• Object ă: t𝐼 r𝑉 s, 𝑆 Ñ 𝑇, @𝑋 .𝑈 , 𝑌u

Proof. By induction on each form of the impossible subtyping. For case S-Trans, we prove by

induction on the type in the middle. □

Lemma A.2. If𝑈 ă: 𝑆 & 𝑇 then𝑈 ă: 𝑆 and𝑈 ă: 𝑇 .

Proof. By induction on the subtyping derivation.

Case S-Refl Immediate.

49



mnamesp𝑇 q :“ 𝑚

𝐼 r𝑋 s Ÿ 𝐽 r𝑈 s t𝑚r...s : ... u

mnamesp&𝐽 r𝑈 sq “ 𝑛

mnamesp𝐼 r𝑇 sq :“ 𝑛,𝑚

mnamesp𝑆q “ 𝑛

mnamesp𝑇 q “ 𝑚

mnamesp𝑆 & 𝑇 q :“ 𝑛,𝑚

vparamsp𝐶r𝑇 sq :“ 𝑚 : 𝑆
𝐶r𝑋 sp𝑚 : 𝑆q Ÿ ..., ...

vparamsp𝐶r𝑇 sq :“ r𝑇 {𝑋 s𝑚 : 𝑆

ctypep𝐶r𝑇 sq :“ 𝑆
𝐶r𝑋 sp...q Ÿ 𝐼 r𝑆s, ...

ctypep𝐶r𝑇 sq :“ r𝑇 {𝑋 s𝐼 r𝑆s

parentsp𝐼 r𝑇 sq :“ 𝐽 r𝑆s
𝐼 r𝑋 s Ÿ 𝐽 r𝑆s t ... u

parentsp𝐼 r𝑇 sq :“ r𝑇 {𝑋 s𝐽 r𝑆s

mrefnp𝑚,Rq :“ 𝑇
R “ t𝑚 : 𝑇 u 𝑚 : 𝑇 P 𝑚 : 𝑇

mrefnp𝑚,Rq :“ 𝑇

Figure 9: Auxiliaries.

Case S-Interface Impossible as parents only returns a list of parent interfaces.

Case S-And Immediate.

Case S-Trans By IH and S-Trans. □

Lemma A.3. If 𝑆 & 𝑇 ă: 𝑈 then 𝑆 ă: 𝑈 or 𝑇 ă: 𝑈 .

Proof. By induction on the subtyping derivation.

Case S-Refl Immediate.

Case S-Top Immediate.

Case S-AndL/R Immediate.

Case S-Trans By IH and S-Trans. □

Lemma A.4. If 𝑆1 Ñ 𝑇1 ă: 𝑆2 Ñ 𝑇2 then 𝑆2 ă: 𝑆1 and 𝑇1 ă: 𝑇2.

Proof. By induction on the subtyping derivation (IH1).

Case S-Refl Immediate.

Case S-Arrow Immediate.
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Ξ $ 𝑒 ó 𝑟

E-ErrVar

𝑥 R 𝑑𝑜𝑚pΞq

Ξ $ 𝑥 ó err

E-ErrThis

this R 𝑑𝑜𝑚pΞq

Ξ $ this ó err

E-ErrSuper

Ξ $ super ó err

E-ErrAccess1

Ξ $ 𝑒 ó val x𝜆𝑥 : 𝑇 . 𝑒 1, ...y

Ξ $ 𝑒.𝑚 ó err

E-ErrAccess2

Ξ $ 𝑒 ó val xΛ𝑋 . 𝑒 1, ...y

Ξ $ 𝑒.𝑚 ó err

E-ErrSuperAccess1

this R 𝑑𝑜𝑚pΞq

Ξ $ super.𝑚 ó err

E-ErrSuperAccess2

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 ‰ 0 methodsp𝑖,𝐶r𝑆sp𝑣qq undefined

Ξ $ super.𝑚 ó err

E-ErrSuperAccess3

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 “ 0 vparamsp𝐶r𝑆sq undefined

Ξ $ super.𝑚 ó err

E-ErrApp1

Ξ $ 𝑒1 ó val 𝐶r𝑇 sp𝑣q

Ξ $ 𝑒1 𝑒2 ó err

E-ErrApp2

Ξ $ 𝑒1 ó val xΛ𝑋 . 𝑒 1, ...y

Ξ $ 𝑒1 𝑒2 ó err

E-ErrTApp1

Ξ $ 𝑒 ó val 𝐶r𝑇 sp𝑣q

Ξ $ 𝑒 𝑇 ó err

E-ErrTApp2

Ξ $ 𝑒 ó val x𝜆𝑥 : 𝑇 . 𝑒 1, ...y

Ξ $ 𝑒 𝑇 ó err

E-ErrNew

|vparamsp𝐶r𝑇 sq| ‰ 𝑛

Ξ $ new 𝐶r𝑇 sp𝑒𝑖
𝑖P1..𝑛

q ó err

Figure 10: Big-step semantics producing errors.

Case S-Trans 𝑆1 Ñ 𝑇1 ă: 𝑈 and𝑈 ă: 𝑆2 Ñ 𝑇2.

By induction on𝑈 (IH2), we have the following cases to consider after we rule out impos-

sible forms of𝑈 with lemma A.1:

• 𝑈 “ 𝑆3 Ñ 𝑇3. By IH1, 𝑆3 ă: 𝑆1 and 𝑇1 ă: 𝑇3 and 𝑆2 ă: 𝑆3 and 𝑇3 ă: 𝑇2. We conclude

with S-Trans.

• 𝑈 “ 𝑆3 & 𝑇3. By lemma A.2, 𝑆1 Ñ 𝑇1 ă: 𝑆3 and 𝑆1 Ñ 𝑇1 ă: 𝑇3. By lemma A.3, we

have two cases to consider:

– 𝑆3 ă: 𝑆2 Ñ 𝑇2. We conclude with IH2 and S-Trans.

– 𝑇3 ă: 𝑆2 Ñ 𝑇2. We conclude with IH2 and S-Trans. □

Lemma A.5. If @𝑌 . 𝑆 ă: @𝑋 .𝑇 then 𝑋 “ 𝑌 and 𝑆 ă: 𝑇 .

Proof. By induction on the subtyping derivation (IH1).

Case S-Refl Immediate.

Case S-Forall Immediate.
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Ξ $ 𝑒 ó 𝑟

E-ErrPropTApp1

Ξ $ 𝑒 ó err

Ξ $ 𝑒 𝑇 ó err

E-ErrPropTApp2

Ξ $ 𝑒 ó val xΛ𝑋 . 𝑒 1, Ξ1
y

r𝑇 {𝑋 sΞ1
$ r𝑇 {𝑋 s𝑒 1

ó err

Ξ $ 𝑒 𝑇 ó err

E-ErrPropApp1

Ξ $ 𝑒1 ó err

Ξ $ 𝑒1 𝑒2 ó err

E-ErrPropApp2

Ξ $ 𝑒2 ó err

Ξ $ 𝑒1 𝑒2 ó err

E-ErrPropApp3

Ξ $ 𝑒1 ó val x𝜆𝑥 : 𝑇 . 𝑒, Ξ1
y

Ξ $ 𝑒2 ó val 𝑣 Ξ1, 𝑥 ÞÑ 𝑣 $ 𝑒 ó err

Ξ $ 𝑒1 𝑒2 ó err

E-ErrPropNew

Ξ $ 𝑒𝑖 ó err

Ξ $ new 𝐶r𝑇 sp𝑒𝑖
𝑖P1..𝑛

q ó err

E-ErrPropAccess1

𝑒 ‰ super
Ξ $ 𝑒 ó err

Ξ $ 𝑒.𝑚 ó err

E-ErrPropAccess2

Ξ $ 𝑒 ó val 𝐶r𝑆sp𝑣q

pthis ÞÑ t0 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó err

Ξ $ 𝑒.𝑚 ó err

E-ErrPropArgMiss

Ξpthisq “ t0 ‹𝐶r𝑆sp𝑣qu 𝑚 R vparamsp𝐶r𝑆sq pthis ÞÑ t1 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó err

Ξ $ super.𝑚 ó err

E-ErrPropSuperMiss

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 ‰ 0 𝑚 R methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó err

Ξ $ super.𝑚 ó err

E-ErrPropSuperHit

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 ‰ 0 p𝑚 : 𝑇 “ 𝑒q P methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ 𝑒 ó err

Ξ $ super.𝑚 ó err

Figure 11: Big-step semantics propagating error results.
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Ξ $ 𝑒 ó𝑘 𝑟
`

E-KillPropApp1

Ξ $ 𝑒1 ó𝑘´1 kill

Ξ $ 𝑒1 𝑒2 ó𝑘 kill

E-KillPropApp2

Ξ $ 𝑒2 ó𝑘´1 kill

Ξ $ 𝑒1 𝑒2 ó𝑘 kill

E-KillPropTApp1

Ξ $ 𝑒 ó𝑘´1 kill

Ξ $ 𝑒 𝑇 ó𝑘 kill

E-KillPropTApp2

Ξ $ 𝑒 ó𝑘´1 val xΛ𝑋 . 𝑒 1, Ξ1
y

r𝑇 {𝑋 sΞ1
$ r𝑇 {𝑋 s𝑒 1

ó𝑘´1 kill

Ξ $ 𝑒 𝑇 ó𝑘 kill

E-KillPropApp3

Ξ $ 𝑒1 ó𝑘´1 val x𝜆𝑥 : 𝑇 . 𝑒, Ξ1
y

Ξ $ 𝑒2 ó𝑘´1 val 𝑣 Ξ1, 𝑥 ÞÑ 𝑣 $ 𝑒 ó𝑘´1 kill

Ξ $ 𝑒1 𝑒2 ó𝑘 kill

E-KillPropNew

Ξ $ 𝑒𝑖 ó𝑘´1 kill

Ξ $ new 𝐶r𝑇 sp𝑒𝑖
𝑖P1..𝑛

q ó𝑘 kill

E-KillPropAccess1

Ξ $ 𝑒 ó𝑘´1 kill

Ξ $ 𝑒.𝑚 ó𝑘 kill

E-KillPropAccess2

Ξ $ 𝑒 ó𝑘´1 val 𝐶r𝑆sp𝑣q

pthis ÞÑ t0 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó𝑘´1 kill

Ξ $ 𝑒.𝑚 ó𝑘 kill

E-KillPropArgMiss

Ξpthisq “ t0 ‹𝐶r𝑆sp𝑣qu 𝑚 R vparamsp𝐶r𝑆sq

pthis ÞÑ t1 ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó𝑘´1 kill

Ξ $ super.𝑚 ó𝑘 kill

E-KillPropSuperMiss

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 ‰ 0 𝑚 R methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ super.𝑚 ó𝑘´1 kill

Ξ $ super.𝑚 ó𝑘 kill

E-KillPropSuperHit

Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

𝑖 ‰ 0 p𝑚 : 𝑇 “ 𝑒q P methodsp𝑖,𝐶r𝑆sp𝑣qq pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑆sp𝑣quq $ 𝑒 ó𝑘´1 kill

Ξ $ super.𝑚 ó𝑘 kill

Figure 12: Finite big-step semantics propagating timeout results.
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Case S-Trans @𝑌 . 𝑆 ă: 𝑈 and𝑈 ă: @𝑋 .𝑇 .

By induction on𝑈 (IH2), we have the following cases to consider after we rule out impos-

sible forms of𝑈 with lemma A.1:

• 𝑈 “ @𝑍 .𝑉 . By IH1 and S-Trans.

• 𝑈 “ 𝑆3 & 𝑇3. By lemmas A.2 and A.3, IH2, and S-Trans. □

Lemma A.6. If 𝑆 ă: 𝑇 then r𝑈 {𝑋 s𝑆 ă: r𝑈 {𝑋 s𝑇 .

Proof. By induction on the subtyping derivation. □

Method Type Calculation (mtype)

Lemma A.7. For a list of types 𝑇 , for any 𝑇𝑖 P 𝑇 , if mtypep𝑚,𝑇𝑖q “ 𝑆 then mtypep𝑚,&𝑇 q “ 𝑆 1

and 𝑆 1 ă: 𝑆 .

Proof. By induction on the list of types.

• The conclusion is vacuously true if the list is empty.

• If 𝑇𝑖 is at the head of the list, by definition of mtype, 𝑆 1 “ mtypep𝑚,&p𝑇𝑖,𝑇 qq “ 𝑆 if

mtypep𝑚,&𝑇 q “ ∅ or 𝑆 1 “ 𝑆 & 𝑆2
if mtypep𝑚,&𝑇 q “ 𝑆2

. In both cases, 𝑆 1 ă: 𝑆 . We

conclude by IH if 𝑇𝑖 is in the rest of the list. □

Lemma A.8. mtypep𝑚,𝑇 q “ ∅ or mtypep𝑚,𝑇 q “ 𝑆 .

Proof. By induction on the type 𝑇 . When 𝑇 “ 𝐼 r𝑈 s, we conclude if 𝑚 P R. Otherwise, by

induction on the tree of interface inheritance (note we assume non-cyclic inheritance), we know

𝑚’s type can be calculated for all parent interfaces. By definition of mtype, the result is some

type 𝑆 if mtype of any super interface is not ∅, or ∅ otherwise. □

Lemma A.9. Define ˛ ::“ 𝑇 | ∅. If mtypep𝑚,𝑇 q “ ˛1 and mtypep𝑚,𝑇 q “ ˛2 then ˛1 “ ˛2.

Proof. By induction on𝑇 . By lemma A.8 and IH,mtype is computable for every subtree of𝑇 . For

an interface, as we assume methods are always uniquely declared, mtype of𝑚 in the interface

is ∅ if undefined or a unique type, and the mtype result is therefore unique. □

Lemma A.10. If D ok and mtypep𝑚,𝑇 q “ 𝑆 and 𝑇 1 ă: 𝑇 then mtypep𝑚,𝑇 1q “ 𝑆 1 and 𝑆 1 ă: 𝑆 .

Proof. By induction on the subtyping derivation.

Case S-Refl Immediate.

Case S-Top Impossible as mtypep𝑚,Objectq “ ∅.
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Case S-Interface 𝐼 r𝑈 s ă: 𝑇 and 𝑇 P parentsp𝐼 r𝑈 sq

If 𝐼 is defined as 𝐼 r𝑋 sŸ 𝐽 r𝑈 1st ... u, by definition of parents,𝑇 “ r𝑈 {𝑋 s𝐽 ˚r𝑈 ˚s and 𝐽 ˚r𝑈 ˚s P

𝐽 r𝑈 1s, then mtypep𝑚, r𝑈 {𝑋 s𝐽 ˚r𝑈 ˚sq “ 𝑆 . By lemma A.7, mtypep𝑚,&r𝑈 {𝑋 s𝐽 r𝑈 1sq “ 𝑆 1

and 𝑆 1 ă: 𝑆 . Consider the following cases:

• 𝑚 R 𝐼 . By definition of mtypes, mtypep𝑚, 𝐼 r𝑈 sq “ 𝑆 1
and 𝑆 1 ă: 𝑆 .

• 𝑚 : 𝑆˚ P 𝐼 , then mtypep𝑚, 𝐼 r𝑈 sq “ r𝑈 {𝑋 s𝑆˚
.

By D ok, 𝐼 ok. By 𝐼 ok, mtypep𝑚,&𝐽 r𝑈 1sq “ 𝑆2
and 𝑆˚ ă: 𝑆2

. By lemma A.6,

mtypep𝑚,&r𝑈 {𝑋 s𝐽 r𝑈 1sq “ r𝑈 {𝑋 s𝑆2 “ 𝑆 1
and r𝑈 {𝑋 s𝑆˚ ă: r𝑈 {𝑋 s𝑆2 “ 𝑆 1

. By S-

Trans, r𝑈 {𝑋 s𝑆˚ ă: 𝑆 .

Case S-Inv 𝐼 r𝑈 s ă: 𝐼 r𝑈 1s and𝑈 ă: 𝑈 1
and𝑈 1 ă: 𝑈

By lemma A.6, it is immediate to have equivalent results of mtype with equivalent type

arguments for the input interface type.

Case S-Andl 𝑆1 & 𝑆2 ă: 𝑆1 and mtypep𝑚, 𝑆1q “ 𝑇

By definition and lemma A.8, mtypep𝑚, 𝑆1 & 𝑆2q “ 𝑇 if mtypep𝑚, 𝑆2q “ ∅ or

mtypep𝑚, 𝑆1 & 𝑆2q “ 𝑇 & 𝑇 1
if mtypep𝑚, 𝑆2q “ 𝑇 1

. In both cases mtypep𝑚, 𝑆1 & 𝑆2q ă: 𝑇 .

Case S-Andr Symmetric to the former case.

Case S-And 𝑇 ă: 𝑇1 & 𝑇2 and mtypep𝑚,𝑇1 & 𝑇2q “ 𝑆

By lemma A.8, we consider the following cases:

• mtypep𝑚,𝑇1q “ mtypep𝑚,𝑇2q “ ∅. Contradiction by lemma A.9.

• mtypep𝑚,𝑇1q “ 𝑆1 and mtypep𝑚,𝑇2q “ ∅, then mtypep𝑚,𝑇1 & 𝑇2q “ 𝑆1. By IH,

mtypep𝑚,𝑇 q “ 𝑆 1
and 𝑆 1 ă: 𝑆1.

• mtypep𝑚,𝑇1q “ ∅ and mtypep𝑚,𝑇2q “ 𝑆2. Symmetric to the former case.

• mtypep𝑚,𝑇1q “ 𝑆1 and mtypep𝑚,𝑇2q “ 𝑆2, then mtypep𝑚,𝑇1 & 𝑇2q “ 𝑆1 & 𝑆2. By IH

and lemma A.9 and S-And, mtypep𝑚,𝑇 q “ 𝑆 1
and 𝑆 1 ă: 𝑆1 & 𝑆2.

Case S-Trans 𝑇 1 ă: 𝑈 and𝑈 ă: 𝑇 and mtypep𝑚,𝑇 q “ 𝑆

By IH, mtypep𝑚,𝑈 q “ 𝑆2 ă: 𝑆 . By IH and lemma A.9, mtypep𝑚,𝑇 1q “ 𝑆 1 ă: 𝑆2
. By

S-Trans, mtypep𝑚,𝑇 1q “ 𝑆 1
and 𝑆 1 ă: 𝑆 . □

Determinism

Lemma A.11 (Determinism). If Ξ $ 𝑒 ó 𝑟1 and Ξ $ 𝑒 ó 𝑟2 then 𝑟1 “ 𝑟2.

Proof. By induction on the first and inversion on the second evaluation derivation. □
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Inversion of Value Typing

Lemma A.12. If x𝜆𝑥 : 𝑆. 𝑒,Ξy : 𝑇 then there exists Γ, R, and t𝑖 ‹𝐶r𝑈 sp𝑣qu such that:

1. Γ ( Ξ

2. Ξpthisq “ t𝑖 ‹𝐶r𝑈 sp𝑣qu

3. R ( t𝑖 ‹𝐶r𝑈 sp𝑣qu

4. Γ, 𝑥 : 𝑆, super : R $ 𝑒 : 𝑇 1

5. 𝑆 Ñ 𝑇 1 ă: 𝑇

or:

1. Γ ( Ξ

2. this R 𝑑𝑜𝑚pΓq

3. Γ, 𝑥 : 𝑆 $ 𝑒 : 𝑇 1

4. 𝑆 Ñ 𝑇 1 ă: 𝑇

Proof. By induction on the closure typing judgment. We conclude immediately for cases VT-

Abs1 and VT-Abs2. For case VT-Sub, we conclude by IH and S-Trans. □

Lemma A.13. If xΛ𝑋 . 𝑒,Ξy : 𝑇 then there exists Γ, R, and t𝑖 ‹𝐶r𝑆sp𝑣qu such that:

1. Γ ( Ξ

2. Ξpthisq “ t𝑖 ‹𝐶r𝑆sp𝑣qu

3. R ( t𝑖 ‹𝐶r𝑆sp𝑣qu

4. Γ, super : R $ 𝑒 : 𝑇 1

5. @𝑋 . 𝑇 1 ă: 𝑇

or:

1. Γ ( Ξ

2. this R 𝑑𝑜𝑚pΓq

3. Γ $ 𝑒 : 𝑇 1

4. @𝑋 . 𝑇 1 ă: 𝑇

Proof. By induction on the closure typing judgment. We conclude immediately for cases VT-

TAbs1 and VT-TAbs2. For case VT-Sub, we conclude by IH and S-Trans. □
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Lemma A.14. If 𝐶r𝑇 sp𝑣q : 𝑉 then there exists𝑚 : 𝑈 and 𝑉 1 such that:

1. vparamsp𝐶r𝑇 sq “ 𝑚 : 𝑈

2. 𝑣 : 𝑈

3. ctypep𝐶r𝑇 sq “ 𝑉 1

4. 𝑉 1 ă: 𝑉

Proof. By induction on the object typing judgment. We conclude immediately for the case VT-

Object. For case VT-Sub, we conclude by IH and S-Trans. □

Type Substitution

Lemma A.15 (Type substitution of typing). If Γ $ 𝑒 : 𝑇 then r𝑆{𝑋 sΓ $ r𝑆{𝑋 s𝑒 : r𝑆{𝑋 s𝑇 .

Proof. By induction on the typing judgment. Note that we assume capture-avoiding type sub-

stitution. □

Lemma A.16 (Type substitution of mtype). If mtypep𝑚,𝑇 q “ 𝑆 then mtypep𝑚, r𝑈 {𝑋 s𝑇 q “

r𝑈 {𝑋 s𝑆 .

Proof. By induction on 𝑇 . For the case where 𝑇 is an interface, we prove by induction on the

tree of interface inheritance. □

LemmaA.17 (Type substitution of refinement consistency). IfR ( t𝑖‹𝐶r𝑇 sp𝑣qu then r𝑆{𝑋 sR (

t𝑖 ‹ r𝑆{𝑋 sp𝐶r𝑇 sp𝑣qqu.

Proof. By inversion of the refinement consistency judgment and lemma A.6. □

Lemma A.18 (Type substitution of value typing). If 𝑣 : 𝑇 then r𝑆{𝑋 s𝑣 : r𝑆{𝑋 s𝑇 .

Lemma A.19 (Type substitution of context consistency). If Γ ( Ξ then r𝑇 {𝑋 sΓ ( r𝑇 {𝑋 sΞ

Proof of lemmas A.18 and A.19. We prove two lemmas above together.

Goal - lemma A.19 By induction on the consistency judgment and lemma A.18 in IH.

Goal - lemma A.18 By induction on the value typing judgment and lemma A.19 in IH and

lemma A.15. □
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Preservation Main Theorem

Lemma A.20 (General preservation). If D ok and Γ, super : R $ 𝑒 : 𝑇 and Γ ( Ξ and

Ξpthisq “ t𝑖 ‹𝐶r𝑈 sp𝑣qu and R ( t𝑖 ‹𝐶r𝑈 sp𝑣qu and Ξ $ 𝑒 ó 𝑟 then 𝑟 “ val 𝑣 1 and 𝑣 1
: 𝑇 .

Lemma A.21 (Simple general preservation). If D ok and Γ $ 𝑒 : 𝑇 and Γ ( Ξ and this R

𝑑𝑜𝑚pΓq and Ξ $ 𝑒 ó 𝑟 then 𝑟 “ val 𝑣 1 and 𝑣 1
: 𝑇 .

Proof of lemmas A.20 and A.21. We prove that both lemmas hold together.

Goal - lemma A.20 By induction on the typing derivation (IH1).

Case T-Var Γ, super : R $ 𝑥 : 𝑇

By the premise of typing, Γp𝑥q “ 𝑇 . We invert the evaluation derivation.

• 𝑥 R 𝑑𝑜𝑚pΞq and 𝑟 “ err. As Γ ( Ξ, 𝑥 P 𝑑𝑜𝑚pΞq. Contradiction.

• Ξp𝑥q “ 𝑣 and 𝑟 “ val 𝑣 . As Γ ( Ξ, 𝑣 : 𝑇 .

Case T-This Γ, super : R $ this : 𝑇
Analogous to the former case.

Case T-Abs Γ, super : R $ 𝜆𝑥 : 𝑆. 𝑒 : 𝑆 Ñ 𝑇

We invert the evaluation derivation. 𝑟 “ val x𝜆𝑥 : 𝑆. 𝑒, Ξy. We conclude with VT-Abs1.

Case T-TAbs Γ, super : R $ Λ𝑋 . 𝑒 : @𝑋 . 𝑇

Analogous to the former case.

Case T-App Γ, super : R $ 𝑒1 𝑒2 : 𝑇

By induction on the evaluation derivation (IH2):

• Ξ $ 𝑒1 𝑒2 ó err and at least one of 𝑒1 and 𝑒2 evaluates to err under Ξ. By IH1, 𝑒1 and

𝑒2 should both be evaluated to values, which leads to a contradiction.

• Ξ $ 𝑒1 𝑒2 ó err and Ξ $ 𝑒1 ó val 𝐷r𝑈 1sp𝑤q. By IH1, 𝐷r𝑈 1sp𝑤q : 𝑆 Ñ 𝑇 . By

inversion lemma of object typing (Theorem A.14), ctypep𝐷r𝑈 1sq “ 𝑉 and 𝑉 ă: 𝑆 Ñ

𝑇 . Syntactically, ctype only yields an interface type 𝐼 r𝑈 2s, and interfaces types are

not subtypes of function types (Theorem A.1). Contradiction.

• Ξ $ 𝑒1 𝑒2 ó err and Ξ $ 𝑒1 ó val xΛ𝑋 . 𝑒,Ξ1y. By IH1, xΛ𝑋 . 𝑒,Ξ1y : 𝑆 Ñ 𝑇 . By

inversion lemma of type abstraction closure typing (Theorem A.13), xΛ𝑋 . 𝑒,Ξ1y :

@𝑋 . 𝑇 1
and @𝑋 . 𝑇 1 ă: 𝑆 Ñ 𝑇 , which is impossible by Theorem A.1. Contradiction.

• Ξ $ 𝑒1 𝑒2 ó val 𝑣 1
and Ξ $ 𝑒1 ó val x𝜆𝑥 : 𝑆 1. 𝑒, Ξ1y and Ξ $ 𝑒2 ó val 𝑣 and

Ξ1, 𝑥 ÞÑ 𝑣 $ 𝑒 ó val 𝑣 1
. By IH1, x𝜆𝑥 : 𝑆 1. 𝑒, Ξ1y : 𝑆 Ñ 𝑇 and 𝑣 : 𝑆 . By the inversion

lemma of typing of closures (Theorem A.12), we have two cases to consider:
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– Γ1 ( Ξ1
and Ξ1pthisq “ t𝑖 ‹ 𝐷r𝑈 1sp𝑤qu and R1 ( t𝑖 ‹ 𝐷r𝑈 1sp𝑤qu, Γ1, 𝑥 :

𝑆 1, super : R1 $ 𝑒 : 𝑇 1
, and 𝑆 1 Ñ 𝑇 1 ă: 𝑆 Ñ 𝑇 . By the inversion lemma of

subtyping of function types (lemma A.4), 𝑆 ă: 𝑆 1
and𝑇 1 ă: 𝑇 . By VT-Sub, 𝑣 : 𝑆 1

.

By C-ConsVar, Γ1, 𝑥 : 𝑆 1 ( Ξ1, 𝑥 ÞÑ 𝑣 . By IH2 and VT-Sub, 𝑣 1
: 𝑇 .

– Γ1 ( Ξ1
and this R 𝑑𝑜𝑚pΓq and Γ1, 𝑥 : 𝑆 1 $ 𝑒 : 𝑇 1

, and 𝑆 1 Ñ 𝑇 1 ă: 𝑆 Ñ 𝑇 .

By the inversion lemma of subtyping of function types (lemma A.4), 𝑆 ă: 𝑆 1

and 𝑇 1 ă: 𝑇 . By VT-Sub, 𝑣 : 𝑆 1
. By C-ConsVar, Γ1, 𝑥 : 𝑆 1 ( Ξ1, 𝑥 ÞÑ 𝑣 . By

Theorem A.21 in IH2 and VT-Sub, 𝑣 1
: 𝑇 .

• Ξ $ 𝑒1 𝑒2 ó err and Ξ $ 𝑒1 ó val x𝜆𝑥 : 𝑆. 𝑒, Ξ1y and Ξ $ 𝑒2 ó val 𝑣 and Ξ1, 𝑥 ÞÑ

𝑣 $ 𝑒 ó err. By the same reasoning for the prior case, Ξ1, 𝑥 ÞÑ 𝑣 $ 𝑒 ó val 𝑣 1
, which

leads to a contradiction by lemma A.11.

Case T-TApp Γ, super : R $ 𝑒 𝑇 : r𝑇 {𝑋 s𝑆

By induction on the evaluation derivation (IH2):

• Ξ $ 𝑒 𝑇 ó err and 𝑒 evaluates to err under Ξ. By IH1, 𝑒 should be evaluated to a

value, which leads to a contradiction.

• Ξ $ 𝑒 𝑇 ó err and Ξ $ 𝑒 ó val 𝐷r𝑈 1sp𝑤q. By IH1, 𝐷r𝑈 1sp𝑤q : @𝑋 . 𝑆 . By inversion

lemma of object typing (Theorem A.14), ctypep𝐶r𝑈 sq “ 𝑉 and𝑉 ă: @𝑋 . 𝑆 . Syntacti-

cally, ctype only yields an interface type 𝐼 r𝑈 1s, and interfaces types are not subtypes

of universal types, which leads to a contradiction by lemma A.1.

• Ξ $ 𝑒 𝑇 ó err and Ξ $ 𝑒 ó val x𝜆𝑥 : 𝑆 1. 𝑒 1,Ξ1y. By IH1, x𝜆𝑥 : 𝑆 1. 𝑒 1,Ξ1y : @𝑋 . 𝑆 . By

inversion lemma of type abstraction closure typing (Theorem A.13), x𝜆𝑥 : 𝑆 1. 𝑒 1,Ξ1y :

𝑆 1 Ñ 𝑇 1
and 𝑆 1 Ñ 𝑇 1 ă: @𝑋 . 𝑆 , which is impossible by lemma A.1.

• Ξ $ 𝑒 𝑇 ó val 𝑣 1
and Ξ $ 𝑒 ó val xΛ𝑋 . 𝑒 1,Ξ1y and r𝑇 {𝑋 sΞ1 $ r𝑇 {𝑋 s𝑒 1 ó val 𝑣 1

.

By IH1, xΛ𝑋 . 𝑒 1,Ξ1y : @𝑋 . 𝑆 . By the inversion lemma of typing of type abstraction

closures (Theorem A.13), we have two cases to consider:

– Γ1 ( Ξ1
and Ξ1pthisq “ t𝑖 ‹ 𝐷r𝑈 1sp𝑤qu and R1 ( t𝑖 ‹ 𝐷r𝑈 1sp𝑤qu and Γ, super :

R1 $ 𝑒 1
: 𝑆 1

and @𝑌 . 𝑆 1 ă: @𝑋 . 𝑆 . By the inversion lemma of subtyping of uni-

versal types (lemma A.5), 𝑋 “ 𝑌 and 𝑆 1 ă: 𝑆 . By lemma A.19, r𝑇 {𝑋 sΓ1 (

r𝑇 {𝑋 sΞ1
. By lemma A.15, r𝑇 {𝑋 sΓ1, super : r𝑇 {𝑋 sR1 $ r𝑇 {𝑋 s𝑒 1

: r𝑇 {𝑋 s𝑆 1
.

By lemma A.17, r𝑇 {𝑋 sR1 ( t𝑖 ‹ r𝑇 {𝑋 sp𝐷r𝑈 1sp𝑤qqu. By IH2, 𝑣 1
: r𝑇 {𝑋 s𝑆 1

. By

lemma A.6, r𝑇 {𝑋 s𝑆 1 ă: r𝑇 {𝑋 s𝑆 . By VT-Sub, 𝑣 1
: r𝑇 {𝑋 s𝑆 .

– Γ ( Ξ1
and this R 𝑑𝑜𝑚pΓq and Γ $ 𝑒 : 𝑆 1

, and @𝑌 . 𝑆 1 ă: @𝑋 . 𝑆 . By the inversion

lemma of subtyping of universal types (lemma A.5), 𝑋 “ 𝑌 and 𝑆 1 ă: 𝑆 . By

lemma A.19, r𝑇 {𝑋 sΓ1 ( r𝑇 {𝑋 sΞ1
. By lemma A.15, r𝑇 {𝑋 sΓ1 $ r𝑇 {𝑋 s𝑒 1

: r𝑇 {𝑋 s𝑆 1
.

By lemma A.21 in IH2, 𝑣 1
: r𝑇 {𝑋 s𝑆 1

. By lemma A.6, r𝑇 {𝑋 s𝑆 1 ă: r𝑇 {𝑋 s𝑆 . By

VT-Sub, 𝑣 1
: r𝑇 {𝑋 s𝑆 .
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• Ξ $ 𝑒 𝑇 ó err and Ξ $ 𝑒 ó val xΛ𝑋 . 𝑒 1,Ξ1y and r𝑇 {𝑋 sΞ1 $ r𝑇 {𝑋 s𝑒 1 ó err. Using
the same reasoning for the prior case, r𝑇 {𝑋 sΞ1 $ r𝑇 {𝑋 s𝑒 1 ó val 𝑣 1

, which leads to a

contradiction by lemma A.11.

Case T-Access Γ, super : R $ 𝑒.𝑚 : 𝑆

By induction on reduction derivation (IH2):

• Γ, super : R $ 𝑒 ó err. By premises and IH1, we know 𝑒 will reduce to a value.

Contradiction.

• Γ, super : R $ 𝑒 ó val x𝜆𝑥 : 𝑈 . 𝑒 1, ...y. By IH1, we know x𝜆𝑥 : 𝑈 . 𝑒 1, ...y : 𝑇 and

mtypep𝑚,𝑇 q “ 𝑆 . By Theorem A.12, x𝜆𝑥 : 𝑈 . 𝑒 1, ...y : 𝑆 1 Ñ 𝑇 1
and 𝑆 1 Ñ 𝑇 1 ă: 𝑇 . By

lemma A.10, mtypep𝑚, 𝑆 1 Ñ 𝑇 1q “ 𝑉 , which is impossible.

• Γ, super : R $ 𝑒 ó val xΛ𝑋 . 𝑒 1,Ξ1y. By IH1, we know xΛ𝑋 . 𝑒 1,Ξ1y : 𝑇 and

mtypep𝑚,𝑇 q “ 𝑆 . By Theorem A.13, xΛ𝑋 . 𝑒 1,Ξ1y : @𝑋 . 𝑆 1
and @𝑋 . 𝑆 1 ă: 𝑇 . By

lemma A.10, mtypep𝑚, @𝑋 . 𝑆 1q “ 𝑉 , which is impossible.

• 𝑒 “ super, then Γ, super : R $ super : 𝑇 , which is impossible.

• Ξ $ 𝑒 ó val𝐶r𝑈 sp𝑣q and pthis ÞÑ t0‹𝐶r𝑈 sp𝑣quq $ super.𝑚 ó val 𝑣 1
and𝐶r𝑈 sp𝑣q : 𝑇

and mtypep𝑚,𝑇 q “ 𝑆 . By IH1, 𝐶r𝑈 sp𝑣q : 𝑇 . By lemma A.14, ctypep𝐶r𝑈 sq “ 𝑇 1
and

𝑇 1 ă: 𝑇 . By lemma A.10, mtypep𝑚,𝑇 1q “ 𝑆 1
and 𝑆 1 ă: 𝑆 . We lookup class 𝐶’s

definition as 𝐶r𝑋 s Ÿ 𝐼 r𝑈 1s, .... By definition of ctype, 𝑇 1 “ r𝑈 {𝑋 s𝐼 r𝑈 1s, therefore

mtypep𝑚, r𝑈 {𝑋 s𝐼 r𝑈 1sq “ 𝑆 1
. By 𝐶 ok, searchp𝑚, 0,𝐶q “ 𝑆˚

and mtypep𝑚, 𝐼 r𝑈 1sq “

𝑆˚˚
and 𝑆˚ ă: 𝑆˚˚

. By lemma A.16, 𝑆 1 “ r𝑈 {𝑋 s𝑆˚˚
. By lemma A.6, r𝑈 {𝑋 s𝑆˚ ă:

r𝑈 {𝑋 s𝑆˚˚
. By S-Trans, r𝑈 {𝑋 s𝑆˚ ă: 𝑆 . We pick a structural refinement R˚ “ t 𝑚 :

𝑆 u and a typing context Γ˚ “ pthis : 𝑇 q. By T-Super, Γ˚, super : R˚ $ super.𝑚 :

𝑆 . By definition of super refinement consistency, R˚ ( t0 ‹ 𝐶r𝑈 sp𝑣qu. By MC-

ConsThis, Γ˚ ( pthis ÞÑ t0 ‹𝐶r𝑈 sp𝑣quq. By IH2, 𝑣 1
: 𝑆 .

• Ξ $ 𝑒 ó val 𝐶r𝑈 sp𝑣q and pthis ÞÑ t0 ‹𝐶r𝑈 sp𝑣quq $ super.𝑚 ó err. Using the same

reasoning for the prior case, pthis ÞÑ t0 ‹ 𝐶r𝑈 sp𝑣quq $ super.𝑚 ó val 𝑣 1
, which

leads to a contradiction by lemma A.11.

Case T-Super Γ, super : R $ super.𝑚 : 𝑆

mrefnp𝑚,Rq “ 𝑆 . 𝑋 is class 𝐶’s type parameter list. By induction on the evaluation

derivation (IH2):

• super evaluates to a value under Ξ. These cases are impossible by ErrSuper and

lemma A.11.

• this R 𝑑𝑜𝑚pΞq and Ξ $ super.𝑚 ó err. Contradiction.

• methodsp𝑖,𝐶r𝑈 sp𝑣qq undefined and 𝑖 ‰ 0. As R ( t𝑖 ‹𝐶r𝑈 sp𝑣qu and mrefnp𝑚,Rq “

𝑆 , theremust be amethod implementation of𝑚 in part of themixin composition from

60



index 𝑖 to the end. Therefore, 𝑖 cannot reach beyond the length of mixin composition

and methods is defined. Contradiction.

• vparamsp𝐶r𝑈 sq undefined and 𝑖 “ 0. As R ( t0 ‹ 𝐶r𝑈 sp𝑣qu and mrefnp𝑚,Rq “ 𝑆 ,

there must be a method implementation of𝑚 as an object field or part of the mixin

composition. Therefore, 𝐶 must be defined and vparamsp𝐶r𝑈 sq is therefore defined.

Contradiction.

• 𝑚 R vparamsp𝐶r𝑈 sq and pthis ÞÑ t1 ‹ 𝐶r𝑈 sp𝑣quq $ super.𝑚 ó val 𝑣 and R (

t0 ‹ 𝐶r𝑈 sp𝑣qu and Γ ( Ξ. By Γ ( Ξ, 𝐶r𝑈 sp𝑣q : 𝑉 . By inverting the super re-

finement consistency judgment, searchp𝑚, 0,𝐶q “ 𝑆 1
and r𝑈 {𝑋 s𝑆 1 ă: 𝑆 As 𝑚 R

vparamsp𝐶r𝑈 sq, searchp𝑚, 1,𝐶q “ 𝑆 1
. We pick a structural refinement R˚ “ t𝑚 : 𝑆 u

and a typing context Γ˚ “ pthis : 𝑉 q. By definition of super refinement consistency,

R˚ ( t1 ‹𝐶r𝑈 sp𝑣qu. By MC-ConsThis, Γ˚ ( pthis ÞÑ t1 ‹𝐶r𝑈 sp𝑣quq. By T-Super,

Γ˚, super : R˚ $ super.𝑚 : 𝑆 . By IH2, 𝑣 1
: 𝑆 .

• vparamsp𝐶r𝑈 sq “ 𝑚𝑖 : 𝑆𝑖 and 𝑚 “ 𝑚𝑖 and pthis ÞÑ t0 ‹ 𝐶r𝑈 sp𝑣𝑖quq $ super.𝑚 ó

val 𝑣𝑖 . By assumption,R ( t0‹𝐶r𝑈 sp𝑣qu. By premise of evaluation, vparamsp𝐶r𝑈 sq “

𝑚𝑖 : 𝑆𝑖 . By inverting the super refinement consistency judgment, searchp𝑚, 0,𝐶q “

𝑆 1
𝑖 and r𝑈 {𝑋 s𝑆 1

𝑖 ă: 𝑆 . As vparamsp𝐶r𝑈 sq “ 𝑚𝑖 : 𝑆𝑖 , r𝑈 {𝑋 s𝑆 1
𝑖 “ 𝑆𝑖 . As Γ ( Ξ,

𝐶r𝑈 sp𝑣q : 𝑉 . By lemma A.14, 𝑣𝑖 : 𝑆𝑖 . By rule VT-Sub, 𝑣𝑖 : 𝑆 .

• Given R ( t𝑖 ‹ 𝐶r𝑈 sp𝑣qu and Γ ( Ξ, searchp𝑚, 𝑖,𝐶q “ 𝑆 1
and r𝑈 {𝑋 s𝑆 1 ă: 𝑆 . By

premises,𝑚 R methodsp𝑖,𝐶r𝑈 sp𝑣qq, therefore searchp𝑚, p𝑖 ` 1q,𝐶q “ 𝑆 1
. By Γ ( Ξ,

𝐶r𝑈 sp𝑣q : 𝑉 . We pick a structural refinement R˚ “ t 𝑚 : 𝑆 u and a typing context

Γ˚ “ pthis : 𝑉 q. By definition of super refinement consistency, R˚ ( tp𝑖 ` 1q ‹

𝐶r𝑈 sp𝑣qu. By MC-ConsThis, Γ˚ ( pthis ÞÑ tp𝑖 ` 1q ‹ 𝐶r𝑈 sp𝑣quq. By T-Super,

Γ˚, super : R˚ $ super.𝑚 : 𝑆 . By IH2, 𝑣 1
: 𝑆 .

• R ( t𝑖‹𝐶r𝑈 sp𝑣qu and Γ ( Ξ. SinceΞpthisq “ t𝑖‹𝐶r𝑈 sp𝑣qu, there exists some𝑇 such

that 𝐶r𝑈 sp𝑣q : 𝑇 . By premises of evaluation, we have the method implementation

p𝑚 : 𝑆 1 “ 𝑒q P methodsp𝑖,𝐶r𝑈 sp𝑣qq and pthis ÞÑ tp𝑖 ` 1q ‹𝐶r𝑈 sp𝑣quq $ 𝑒 ó val 𝑣 1
.

Therefore, we know that 𝑚 is defined in mixin 𝑀𝑖 . We lookup several definitions:

mixin𝑀𝑖 as𝑀𝑖r𝑌 sR
1

𝑇 1 I, the class𝐶 as𝐶r𝑋 sŸ 𝐼 r𝑈 1s, 𝑀𝑖r𝑈
2s, and the original definition

of 𝑚 in I as 𝑚 : 𝑆2 “ 𝑒 1
. We denote the type substitution 𝜎 “ r𝑈 {𝑋 sr𝑈 2{𝑌 s. By

D ok, 𝐶 ok. By 𝐶 ok, 𝑀𝑖 ok. By 𝑀𝑖 ok, pthis : 𝑇 1, super : R1q $ 𝑒 1
: 𝑆2

. By

lemma A.15, pthis : 𝜎𝑇 1, super : 𝜎R1q $ 𝜎𝑒 1
: 𝜎𝑆2

. By definition of methods,

𝑆 1 “ 𝜎𝑆2
and 𝑒 “ 𝜎𝑒 1

. Therefore, pthis : 𝜎𝑇 1, super : 𝜎R1q $ 𝑒 : 𝑆 1
.

To apply IH2, we are to prove (1) pthis : 𝜎𝑇 1q ( pthis ÞÑ tp𝑖 ` 1q ‹ 𝐶r𝑈 sp𝑣quq, (2)

𝜎R1 ( tp𝑖 ` 1q ‹𝐶r𝑈 sp𝑣qu. We now prove both aspects:

1. By𝐶 ok,𝑀𝑖 ñ 𝐶 . By𝑀𝑖 ñ 𝐶 , 𝐼 r𝑈 1s ă: r𝑈 2{𝑌 s𝑇 1
. By lemma A.6, r𝑈 {𝑋 s𝐼 r𝑈 1s ă:

𝜎𝑇 1
. By𝐶r𝑈 sp𝑣q : 𝑇 and lemmaA.14,𝐶r𝑈 sp𝑣q : 𝑇 2

and𝑇 2 ă: 𝑇 and ctypep𝐶r𝑈 sq “

𝑇 2 “ r𝑈 {𝑋 s𝐼 r𝑈 1s. By VT-Sub, 𝐶r𝑈 sp𝑣q : 𝜎𝑇 1
. By C-ConsThis, we have (1).
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2. By𝐶 ok,𝑀𝑖 ñ 𝐶 . By𝑀𝑖 ñ 𝐶 , for all p𝑚 : 𝑆˚q P R1
, searchp𝑚, 𝑖`1,𝐶q “ 𝑆˚˚

and

𝑆˚˚ ă: r𝑈 2{𝑌 s𝑆˚
. By lemma A.6, for all p𝑚 : 𝜎𝑆˚q P 𝜎R1

, searchp𝑚, 𝑖 ` 1,𝐶q “

𝑆˚˚
and r𝑈 {𝑋 s𝑆˚˚ ă: r𝑈 {𝑋 sr𝑈 2{𝑌 s𝑆˚ “ 𝜎𝑆˚

. By definition of super refinement

consistency, we have (2).

By IH2, 𝑣 1
: 𝑆 1

. By R ( t𝑖 ‹ 𝐶r𝑈 sp𝑣qu and definition of search, searchp𝑚, 𝑖,𝐶q “

r𝑈 2{𝑌 s𝑆2
and r𝑈 {𝑋 sr𝑈 2{𝑌 s𝑆2 “ 𝜎𝑆2 “ 𝑆 1 ă: 𝑆 . By VT-Sub, 𝑣 1

: 𝑆 .

Case T-New Γ, super : R $ new 𝐶r𝑇 sp𝑒q : 𝑉

By inverting the reduction derivation:

• Some 𝑒 P 𝑒 evaluates to err under Ξ. By IH and premises, we know all arguments 𝑒

should evaluate to values. Contradiction.

• It is impossible that the number of arguments provided does not match the construc-

tor given that the object instantiation is well-typed.

• Ξ $ new 𝐶r𝑇 sp𝑒q ó val 𝐶r𝑇 sp𝑣q and Ξ $ 𝑒 ó val 𝑣 and vparamsp𝐶r𝑇 sq “ 𝑚 : 𝑈 . By

IH and premises, 𝑣 : 𝑈 . By VT-Object, 𝐶r𝑇 sp𝑣q : 𝑉 .

Case T-Sub By IH1 and VT-Sub.

Goal - lemma A.21 By induction on the typing derivation and the evaluation derivation. The

proof is mostly analogous and symmetric to the proof of lemma A.20 by using the two lemmas

in the induction hypothesis alternately. Note that for this proof, case T-Super is impossible as

Γ contains no super structural refinement by Γ ( Ξ. □

Proof of Theorem 3.1. Corollary of lemma A.21. □

A.2.2 Coverage and Soundness

Proof of lemma 3.3. By induction on 𝑛 and case analysis on the shape of 𝑒 . When 𝑛 “ 0, the

theorem immediately follows by E-Timeout. We now prove the case when 𝑛 ą 0.

• 𝑒 “ 𝑥 . E-Var handles the case when Ξp𝑥q “ 𝑣 . E-ErrVar handles the case when 𝑥 is

unbound in Ξ.

• 𝑒 “ this. E-This handles the case when Ξpthisq “ t𝑖 ‹𝐶r𝑇 sp𝑣qu. E-ErrThis handles the

case when this is unbound in Ξ.

• 𝑒 “ super. By E-ErrSuper.

• 𝑒 “ 𝜆𝑥 : 𝑇 . 𝑒 1
. By E-Abs.

• 𝑒 “ Λ𝑋 . 𝑒 1
. By E-TAbs.
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• 𝑒 “ 𝑒1 𝑒2. By IH, Ξ $ 𝑒1 ó𝑛´1 𝑟
`
1
and Ξ $ 𝑒2 ó𝑛´1 𝑟

`
2
. We do case analysis on 𝑟`

1
and 𝑟`

2
.

The cases when at least one of 𝑟`
1
and 𝑟`

2
is kill or err are handled by E-ErrPropApp1, E-

ErrPropApp2, E-KillPropApp1 and E-KillPropApp2. When 𝑟`
1

“ val 𝑣1 and 𝑟`
2

“ val 𝑣2,
we do case analysis on 𝑣1. The cases when 𝑣1 is a type abstraction closure or an object

are handled by E-ErrApp1 or E-ErrApp2. When 𝑣1 is a lambda abstraction closure, we

conclude by IH, E-App or E-ErrPropApp3 or E-KillPropApp3.

• 𝑒 “ 𝑒 1 𝑇 . By IH, Ξ $ 𝑒 1 ó𝑛´1 𝑟
`
. We do case analysis on 𝑟`

. The cases when 𝑟`
is kill or

err are handled by E-ErrPropTApp1 and E-KillPropTApp1. When 𝑟` “ val 𝑣 , we do case
analysis on 𝑣 . The cases when 𝑣 is a lambda abstraction closure or an object are handled

by E-ErrTApp1 or E-ErrTApp2. When 𝑣 is a type abstraction closure, we conclude by IH,

E-TApp or E-ErrPropTApp2 or E-KillPropTApp2.

• 𝑒 “ 𝑒 1.𝑚. By IH, Ξ $ 𝑒 1 ó𝑛´1 𝑟
`
. We discuss cases when 𝑒 1 ‰ super or 𝑒 1 “ super and

do case analysis on 𝑟`
.

– 𝑒 1 ‰ super. The cases when 𝑟`
is err or kill are handled by E-ErrPropAccess1 and

E-KillPropAccess1. When 𝑟`
is val 𝑣 , we do case analysis on 𝑣 . The cases when 𝑣 is

a lambda or type abstraction closure are handled by E-ErrAccess1 or E-ErrAccess2.

When 𝑣 is an object, we conclude by IH, E-Access or E-ErrPropAccess2 or E-

KillPropAccess2.

– 𝑒 1 “ super. The case when 𝑟`
is kill is handled by E-KillPropAccess1. When 𝑟`

is err or val 𝑣 , we first discuss if this is bound in Ξ. If it is not, we conclude by

E-ErrSuperAccess1. If it is (Ξpthisq “ t𝑖 ‹𝐶r𝑇 sp𝑣qu), we discuss 𝑖 “ 0 or 𝑖 ą 0.

∗ 𝑖 “ 0. We discuss if vparamsp𝐶r𝑇 sq is defined or undefined, and𝑚 is in or not in

vparamsp𝐶r𝑇 sq. If vparamsp𝐶r𝑇 sq is undefined, we conclude by E-ErrSuperAccess3.

Otherwise, if𝑚 is in vparamsp𝐶r𝑇 sq, we conclude by E-ArgHit. If it is not, we

conclude by IH, E-ArgMiss or E-ErrPropArgMiss or E-KillPropArgMiss.

∗ 𝑖 ą 0. We discuss if methodsp𝑖,𝐶r𝑇 sp𝑣qq is defined or undefined, and𝑚 is in or

not inmethodsp𝑖,𝐶r𝑇 sp𝑣qq. If it is undefined, we conclude byE-ErrSuperAccess2.

Otherwise, if𝑚 is inmethodsp𝑖,𝐶r𝑇 sp𝑣qq, we conclude by IH, E-SuperHit or E-

ErrPropSuperHit or E-KillPropSuperHit. If𝑚 is not in, we conclude by IH,

E-SuperMiss or E-ErrPropSuperMiss or E-KillPropSuperMiss.

• 𝑒 “ new 𝐶r𝑇 sp𝑒𝑖
𝑖P1..𝑘

q. By IH, Ξ $ 𝑒𝑖 ó𝑛´1 𝑟
`
𝑖
. If |vparamsp𝐶r𝑇 sq| ‰ 𝑘 , we conclude

by E-ErrNew. Otherwise, we do case analysis on 𝑟`
𝑖
. If at least one of 𝑟`

𝑖
is err or kill,

we conclude by E-ErrPropNew or E-KillPropNew. Otherwise (i.e. 𝑟`
𝑖

“ val 𝑣𝑖 ), we
conclude by E-New. □

Lemma A.22. If Ξ $ 𝑒 ó𝑛 err then Ξ $ 𝑒 ó err or Ξ $ 𝑒 ó𝑛 kill.
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Proof. By induction on the evaluation derivation. By IH, subderivation of 𝜖 $ 𝑒 ó𝑛 err with
an err result has a kill result by finite evaluation or err result by the original evaluation. In the

former case, we conclude by deriving 𝜖 $ 𝑒 ó𝑛 kill using timeout propagation rules. Otherwise,

we derive Ξ $ 𝑒 ó err. □

Lemma A.23. If Ξ $ 𝑒 ó𝑛 val 𝑣 then Ξ $ 𝑒 ó val 𝑣 .

Proof. By induction on the finite evaluation derivation. □

Lemma A.24. If P : 𝑇 then for all 𝑛, 𝜖 $ 𝑒 ó val 𝑣 and 𝑣 : 𝑇 , or 𝜖 $ 𝑒 ó𝑛 kill.

Proof of lemma A.24. By lemma 3.3, 𝜖 $ 𝑒 ó𝑛 𝑟`
. If 𝑟`

is kill, the lemma immediately follows.

If 𝑟`
is err, by lemma A.22, Ξ $ 𝑒 ó err or Ξ $ 𝑒 ó𝑛 kill. We conclude immediately in the latter

case. In the former case, we reach a contradiction by lemma 3.1. If 𝑟`
is val 𝑣 , we conclude by

lemmas 3.1 and A.23. □

Proof of theorem 3.5. Corollary of lemma A.24. □
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Appendix B

Examples from the Literature

This appendix provides MLscript/SuperOOP implementations of the examples discussed in Sec-

tion 5.1. The contents of these files were extracted directly from our test suite. All the lines that

begin with //| were inserted by our testing infrastructure automatically, displaying the inferred

types and evaluated results.

We have also made use of modules in our examples, but they are not a core concept of Su-

perOOP. Indeed, a module simply desugars to a parameterless class along with a let binding of

the same name whose body is an instance of the class. More concretely, the declaration ‘module

M extends Ms implements Is’ desugars to:

class M() extends Ms implements Is

let M = M()

B.1 Polymorphic Variants

From Garrigue [2000].

class Cons[out A](head: A, tail: Cons[A] | Nil)

module Nil

//| class Cons[A](head: A, tail: Cons[A] | Nil)

//| module Nil

let l = Cons(1, Nil)

//| let l: Cons [1]

//| l

//| = Cons {}

class NotFound ()

class Success[out A]( result: A)

//| class NotFound ()

//| class Success[A]( result: A)

fun list_assoc(s, l) =

if l is

Cons(h, t) then

if s === h._1 then Success(h._2)
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else list_assoc(s, t)

Nil then NotFound ()

//| fun list_assoc: @ 'a 'A. (Eql['a], Cons[{_1: 'a, _2: 'A}] | Nil ,) Ñ (

NotFound | Success['A])

// fun list_assoc(s: Str , l: Cons[{ _1: Str , _2: 'b }] | Nil): NotFound |

Success['b]

class Var(s: Str)

//| class Var(s: Str)

mixin EvalVar {

fun eval(sub , v) =

if v is Var(s) then

if list_assoc(s, sub) is

NotFound then v

Success(r) then r

}

//| mixin EvalVar () {

//| fun eval: (Cons[{_1: anything , _2: 'result }] | Nil , Var ,) Ñ (Var | '

result)

//| }

class Abs[A](x: Str , t: A)

class App[A](s: A, t: A)

//| class Abs[A](x: Str , t: A)

//| class App[A](s: A, t: A)

fun gensym (): Str = "fun"

//| fun gensym: () Ñ Str

fun int_to_string(x: Int): Str = "0"

//| fun int_to_string: (x: Int ,) Ñ Str

mixin EvalLambda {

fun eval(sub , v) =

if v is

App(t1, t2) then

let l1 = this.eval(sub , t1)

let l2 = this.eval(sub , t2)

if t1 is Abs(x, t) then

this.eval(Cons((x, l2), Nil), t)

else

App(l1, l2)

Abs(x, t) then

let s = gensym ()

Abs(s, this.eval(Cons((x, Var(s)), sub), t))

else

super.eval(sub , v)

}

//| mixin EvalLambda () {

//| super: {eval: ('a, 'b,) Ñ 'c}
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//| this: {eval: ('a, 's,) Ñ ('A & 'd) & (Cons[(Str , 'd,)], 't,) Ñ 'c &

(Cons[(Str , Var ,) | 'A0], 't0 ,) Ñ 'A1}

//| fun eval: ('a & (Cons['A0] | Nil), Abs['t0] | App['s & (Abs['t] |

Object & ~#Abs)] | Object & 'b & ~#Abs & ~#App ,) Ñ (Abs['A1] | App['A]

| 'c)

//| }

module Test1 extends EvalVar , EvalLambda

//| module Test1 {

//| fun eval: @ 'a. (Cons[{_1: anything , _2: 'result }] | Nil , Abs['b] |

App['A] | Var ,) Ñ ('result | 'a)

//| }

//| where

//| 'b <: Abs['b] | App['A] | Var

//| 'A <: 'b & (Abs['b] | Object & ~#Abs)

//| 'result :> Var | 'a

//| 'a :> App['result] | Abs['result]

Test1.eval(Nil , Var("a"))

//| @ 'a. 'A | 'a

//| where

//| 'A :> 'a | Var

//| 'a :> App['A] | Abs['A]

//| res

//| = Var {}

Test1.eval(Nil , Abs("b", Var("a")))

//| @ 'a. 'A | 'a

//| where

//| 'A :> Var | 'a

//| 'a :> App['A] | Abs['A]

//| res

//| = Abs {}

Test1.eval(Cons(("c", Var("d")), Nil), App(Abs("b", Var("b")), Var("c")))

//| @ 'a. 'A | 'a

//| where

//| 'A :> 'a | Var

//| 'a :> App['A] | Abs['A]

//| res

//| = Var {}

Test1.eval(Cons(("c", Abs("d", Var("d"))), Nil), App(Abs("b", Var("b")),

Var("c")))

//| @ 'a. 'A | 'a

//| where

//| 'A :> 'a | Abs[Var] | Var

//| 'a :> App['A] | Abs['A]

//| res

//| = Var {}

class Numb(n: Int)
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class Add[A](l: A, r: A)

class Mul[A](l: A, r: A)

//| class Numb(n: Int)

//| class Add[A](l: A, r: A)

//| class Mul[A](l: A, r: A)

fun map_expr(f, v) =

if v is

Var then v

Numb then v

Add(l, r) then Add(f(l), f(r))

Mul(l, r) then Mul(f(l), f(r))

//| fun map_expr: @ 'l 'A 'l0 'A0. ('l Ñ 'A & 'l0 Ñ 'A0, Add['l] | Mul['

l0] | Numb | Var ,) Ñ (Add['A] | Mul['A0] | Numb | Var)

mixin EvalExpr {

fun eval(sub , v) =

fun eta(e) = this.eval(sub , e)

let vv = map_expr(eta , v)

if vv is

Var then super.eval(sub , vv)

Add(Numb(l), Numb(r)) then Numb(l + r)

Mul(Numb(l), Numb(r)) then Numb(l * r)

else v

}

//| mixin EvalExpr () {

//| super: {eval: ('a, Var ,) Ñ 'b}

//| this: {eval: ('a, 'c,) Ñ Object}

//| fun eval: ('a, 'b & (Add['c] | Mul['c] | Numb | Var),) Ñ (Numb | 'b)

//| }

module Test2 extends EvalVar , EvalExpr

//| module Test2 {

//| fun eval: @ 'a. (Cons[{_1: anything , _2: Object & 'result }] | Nil , 'a

& (Add['b] | Mul['b] | Numb | Var),) Ñ (Numb | Var | 'result | 'a | 'b

)

//| }

//| where

//| 'b <: Add['b] | Mul['b] | Numb | Var

Test2.eval(Nil , Var("a"))

//| Numb | Var

//| res

//| = Var {}

Test2.eval(Cons(("c", Abs("d", Var("d"))), Nil), Var("a"))

//| Abs[Var] | Numb | Var

//| res

//| = Var {}

Test2.eval(Cons(("a", Numb (1)), Nil), Var("a"))

//| Numb | Var
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//| res

//| = Var {}

Test2.eval(Cons(("a", Abs("d", Var("d"))), Nil), Add(Numb (1), Var("a")))

//| Abs[Var] | Add[Numb | Var] | Numb | Var

//| res

//| = Add {}

module Test3 extends EvalVar , EvalExpr , EvalLambda

//| module Test3 {

//| fun eval: @ 'A 'a. (Cons[{_1: anything , _2: 'result }] | Nil , Abs['b]

| App['A] | Object & 'c & ~#Abs & ~#App ,) Ñ ('A0 | 'a)

//| }

//| where

//| 'result :> 'A0

//| <: Object

//| 'A0 :> Numb | Var | 'result | 'c | 'a

//| 'a :> App['A0] | Abs['A0]

//| 'c <: Add['b] | Mul['b] | Numb | Var

//| 'b <: Abs['b] | App['A] | Object & 'c & ~#Abs & ~#App

//| 'A <: 'b & (Abs['b] | Object & ~#Abs)

Test3.eval(Cons(("c", Abs("d", Var("d"))), Nil), Abs("a", Var("a")))

//| @ 'a. 'A | 'a

//| where

//| 'A :> 'a | Abs[Var] | Numb | Var

//| 'a :> App['A] | Abs['A]

//| res

//| = Abs {}

Test3.eval(Cons(("c", Abs("d", Var("d"))), Nil), App(Abs("a", Var("a")),

Add(Numb (1), Var("c"))))

//| @ 'a. 'A | 'a

//| where

//| 'A :> 'a | Abs[Var] | Add[Numb | Var] | Numb | Var

//| 'a :> App['A] | Abs['A]

//| res

//| = Var {}

B.2 A Simple "Regions" DSL

From Sun et al. [2022]. Note that for better illustration of class/module method types, we provide

several type synonyms to represent the variant types of the eDSL. The inferred type signatures

are checked as subtypes of the method type annotations. For the unannotated raw version of

this example, please refer to our open-source implementation repository or our artifact.

// ******************* Initial System *******************

class Vector(val x: Int , val y: Int)

//| class Vector(x: Int , y: Int)
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class Circle(radius: Int)

class Outside[out Region ](a: Region)

class Union[out Region ](a: Region , b: Region)

class Intersect[out Region ](a: Region , b: Region)

class Translate[out Region ](v: Vector , a: Region)

//| class Circle(radius: Int)

//| class Outside[Region ](a: Region)

//| class Union[Region ](a: Region , b: Region)

//| class Intersect[Region ](a: Region , b: Region)

//| class Translate[Region ](v: Vector , a: Region)

type BaseLang[T] = Circle | Intersect[T] | Union[T] | Outside[T] |

Translate[T]

//| type BaseLang[T] = Circle | Intersect[T] | Outside[T] | Translate[T] |

Union[T]

mixin SizeBase {

fun size(r) =

if r is

Circle(_) then 1

Outside(a) then this.size(a) + 1

Union(a, b) then this.size(a) + this.size(b) + 1

Intersect(a, b) then this.size(a) + this.size(b) + 1

Translate(_, a) then this.size(a) + 1

}

//| mixin SizeBase () {

//| this: {size: 'a Ñ Int}

//| fun size: (Circle | Intersect['a] | Outside['a] | Translate['a] |

Union['a]) Ñ Int

//| }

// ******************* Linguistic Reuse and Meta -Language Optimizations

*******************

fun round(n: Num): Int = 0

//| fun round: (n: Num) Ñ Int

fun go(x, offset) =

if x is 0 then Circle (1)

else

let shared = go(x - 1, round(offset / 2))

Union(Translate(Vector (0 - offset , 0), shared),

Translate(Vector(offset , 0), shared))

//| fun go: @ 'Region. (0 | Int & ~0, Int) Ñ 'Region

//| where

//| 'Region :> Circle | Union[Translate['Region ]]

// * Note that first -class polymorphism manages (correctly) to preserve the

universal quantification

let circles = go(2, 1024)

//| let circles: @ 'Region. 'Region
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//| where

//| 'Region :> Circle | Union[Translate['Region ]]

//| circles

//| = Union {}

// ******************* Adding More Language Constructs *******************

class Univ()

class Empty()

class Scale[out Region ](v: Vector , a: Region)

//| class Univ()

//| class Empty()

//| class Scale[Region ](v: Vector , a: Region)

type ExtLang[T] = Univ | Empty | Scale[T]

//| type ExtLang[T] = Empty | Scale[T] | Univ

mixin SizeExt {

fun size(a) =

if a is

Univ then 1

Empty then 1

Scale(_, b) then this.size(b) + 1

else super.size(a)

}

//| mixin SizeExt () {

//| super: {size: 'a Ñ 'b}

//| this: {size: 'c Ñ Int}

//| fun size: (Empty | Object & 'a & ~#Empty & ~#Scale & ~#Univ | Scale['

c] | Univ) Ñ (Int | 'b)

//| }

type RegionLang = BaseLang[RegionLang] | ExtLang[RegionLang]

//| type RegionLang = BaseLang[RegionLang] | ExtLang[RegionLang]

module TestSize extends SizeBase , SizeExt {

fun size: RegionLang Ñ Int

}

//| module TestSize {

//| fun size: RegionLang Ñ Int

//| }

TestSize.size(Empty())

//| Int

//| res

//| = 1

TestSize.size(circles)

//| Int

//| res

//| = 13
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TestSize.size(Scale(Vector(1, 1), circles))

//| Int

//| res

//| = 14

// ******************* Adding a New Interpretation *******************

// a stupid power (Int ** Int) implementation

fun pow(x, a) =

if a is 0 then 1

else x * pow(x, a - 1)

//| fun pow: (Int , 0 | Int & ~0) Ñ Int

mixin Contains {

fun contains(a, p) =

if a is

Circle(r) then pow(p.x, 2) + pow(p.y, 2) <= pow(r, 2)

Outside(a) then not (this.contains(a, p))

Union(lhs , rhs) then

this.contains(lhs , p) or this.contains(rhs , p)

Intersect(lhs , rhs) then

this.contains(lhs , p) and this.contains(rhs , p)

Translate(v, a) then

this.contains(a, Vector(p.x - v.x, p.y - v.y))

}

//| mixin Contains () {

//| this: {contains: ('a, 'b) Ñ Bool & ('c, Vector) Ñ 'd}

//| fun contains: (Circle | Intersect['a] | Outside['a] | Translate['c] |

Union['a], {x: Int , y: Int} & 'b) Ñ (Bool | 'd)

//| }

type BaseRegionLang = BaseLang[BaseRegionLang]

//| type BaseRegionLang = BaseLang[BaseRegionLang]

module TestContains extends Contains {

fun contains: (BaseRegionLang , Vector) Ñ Bool

}

//| module TestContains {

//| fun contains: (BaseRegionLang , Vector) Ñ Bool

//| }

TestContains.contains(Translate(Vector(0, 0), Circle (1)), Vector(0, 0))

//| Bool

//| res

//| = true

TestContains.contains(Intersect(Translate(Vector(0, 0), Circle (1)),

Circle (1)), Vector(0, 0))

//| Bool

//| res

//| = true

TestContains.contains(circles , Vector(0, 0))
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//| Bool

//| res

//| = false

// ******************* Dependencies , Complex Interpretations , and Domain -

Specific Optimizations *******************

fun toString(a: Int): Str = "foo"

fun concat(a: Str , b: Str): Str = a

//| fun toString: (a: Int) Ñ Str

//| fun concat: (a: Str , b: Str) Ñ Str

mixin Text {

fun text(e) =

if e is

Circle(r) then

concat("a circular region of radius ", toString(r))

Outside(a) then

concat("outside a region of size ", toString(this.size(a)))

Union then

concat("the union of two regions of size ", toString(this.size(e)))

Intersect then

concat("the intersection of two regions of size ",

toString(this.size(e)))

Translate then

concat("a translated region of size ", toString(this.size(e)))

}

//| mixin Text() {

//| this: {size: (Intersect[nothing] | Translate['Region] | Union[nothing

] | 'a) Ñ Int}

//| fun text: (Circle | Intersect[anything] | Outside['a] | Translate['

Region] | Union[anything ]) Ñ Str

//| }

module SizeText extends SizeBase , Text {

fun size: BaseRegionLang Ñ Int

fun text: BaseRegionLang Ñ Str

}

//| module SizeText {

//| fun size: BaseRegionLang Ñ Int

//| fun text: BaseRegionLang Ñ Str

//| }

SizeText.text(circles)

//| Str

//| res

//| = 'the union of two regions of size '

SizeText.size(circles)

//| Int

//| res
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//| = 13

SizeText.text(Intersect(Translate(Vector(0, 0), Circle (1)), Circle (1)))

//| Str

//| res

//| = 'the intersection of two regions of size '

SizeText.size(Intersect(Translate(Vector(0, 0), Circle (1)), Circle (1)))

//| Int

//| res

//| = 4

mixin IsUniv {

fun isUniv(e) =

if e is

Univ then true

Outside(a) then this.isEmpty(a)

Union(a, b) then this.isUniv(a) or this.isUniv(b)

Intersect(a, b) then this.isUniv(a) and this.isUniv(b)

Translate(_, a) then this.isUniv(a)

Scale(_, a) then this.isUniv(a)

else false

}

//| mixin IsUniv () {

//| this: {isEmpty: 'a Ñ 'b, isUniv: 'c Ñ Bool & 'd Ñ 'b}

//| fun isUniv: (Intersect['c] | Object & ~#Intersect & ~#Outside & ~#

Scale & ~#Translate & ~#Union & ~#Univ | Outside['a] | Scale['d] |

Translate['d] | Union['c] | Univ) Ñ (Bool | 'b)

//| }

mixin IsEmpty {

fun isEmpty(e) =

if e is

Univ then true

Outside(a) then this.isUniv(a)

Union(a, b) then this.isEmpty(a) or this.isEmpty(b)

Intersect(a, b) then this.isEmpty(a) and this.isEmpty(b)

Translate(_, a) then this.isEmpty(a)

Scale(_, a) then this.isEmpty(a)

else false

}

//| mixin IsEmpty () {

//| this: {isEmpty: 'a Ñ Bool & 'b Ñ 'c, isUniv: 'd Ñ 'c}

//| fun isEmpty: (Intersect['a] | Object & ~#Intersect & ~#Outside & ~#

Scale & ~#Translate & ~#Union & ~#Univ | Outside['d] | Scale['b] |

Translate['b] | Union['a] | Univ) Ñ (Bool | 'c)

//| }

module IsUnivIsEmpty extends IsUniv , IsEmpty {

fun isEmpty: RegionLang Ñ Bool

fun isUniv: RegionLang Ñ Bool

}
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//| module IsUnivIsEmpty {

//| fun isEmpty: RegionLang Ñ Bool

//| fun isUniv: RegionLang Ñ Bool

//| }

module IsUnivIsEmpty extends IsEmpty , IsUniv {

fun isEmpty: RegionLang Ñ Bool

fun isUniv: RegionLang Ñ Bool

}

//| module IsUnivIsEmpty {

//| fun isEmpty: RegionLang Ñ Bool

//| fun isUniv: RegionLang Ñ Bool

//| }

IsUnivIsEmpty.isUniv(circles)

//| Bool

//| res

//| = false

IsUnivIsEmpty.isEmpty(circles)

//| Bool

//| res

//| = false

mixin Eliminate {

fun eliminate(e) =

if e is

Outside(Outside(a)) then this.eliminate(a)

Outside(a) then Outside(this.eliminate(a))

Union(a, b) then

Union(this.eliminate(a), this.eliminate(b))

Intersect(a, b) then

Intersect(this.eliminate(a), this.eliminate(b))

Translate(v, a) then Translate(v, this.eliminate(a))

Scale(v, a) then Scale(v, this.eliminate(a))

else e

}

//| mixin Eliminate () {

//| this: {

//| eliminate: 'a Ñ 'b & 'c Ñ 'Region & 'd Ñ 'Region0 & 'e Ñ '

Region1 & 'f Ñ 'Region2 & 'g Ñ 'Region3

//| }

//| fun eliminate: (Intersect['e] | Object & 'b & ~#Intersect & ~#Outside

& ~#Scale & ~#Translate & ~#Union | Outside['c & (Object & ~#Outside |

Outside['a])] | Scale['g] | Translate['f] | Union['d]) Ñ (Intersect['

Region1] | Outside['Region] | Scale['Region3] | Translate['Region2] |

Union['Region0] | 'b)

//| }

module TestElim extends Eliminate {
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fun eliminate: RegionLang Ñ RegionLang

}

//| module TestElim {

//| fun eliminate: RegionLang Ñ RegionLang

//| }

TestElim.eliminate(Outside(Outside(Univ())))

//| RegionLang

//| res

//| = Univ {}

TestElim.eliminate(circles)

//| RegionLang

//| res

//| = Union {}

// ***********************************************************

module Lang extends SizeBase , SizeExt , Contains , Text , IsUniv , IsEmpty ,

Eliminate {

fun contains: (BaseRegionLang , Vector) Ñ Bool

fun eliminate: RegionLang Ñ RegionLang

fun isEmpty: RegionLang Ñ Bool

fun isUniv: RegionLang Ñ Bool

fun size: RegionLang Ñ Int

fun text: BaseRegionLang Ñ Str

}

//| module Lang {

//| fun contains: (BaseRegionLang , Vector) Ñ Bool

//| fun eliminate: RegionLang Ñ RegionLang

//| fun isEmpty: RegionLang Ñ Bool

//| fun isUniv: RegionLang Ñ Bool

//| fun size: RegionLang Ñ Int

//| fun text: BaseRegionLang Ñ Str

//| }

Lang.size(circles)

//| Int

//| res

//| = 13

Lang.contains(circles , Vector(0, 0))

//| Bool

//| res

//| = false

Lang.text(circles)

//| Str

//| res

//| = 'the union of two regions of size '

76



Lang.isUniv(circles)

//| Bool

//| res

//| = false

Lang.isEmpty(circles)

//| Bool

//| res

//| = false

Lang.size(Lang.eliminate(circles))

//| Int

//| res

//| = 13
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